CORROSION DEVELOPMENT OF POST-TENSIONED TENDONS WITH DEFICIENT GROUT

Kingsley Lau and Mario Paredes

Florida Department of Transportation, State Materials Office
5007 NE 39th Ave. Gainesville, FL 32609

Durability of Post-Tensioned Infrastructure
INTRODUCTION: Post-Tensioned Strand Corrosion

• Several Documented Cases of Corrosion-Related Failures of Post-Tensioned (PT) Strand in FL.

• Corrosion identified in early 2000’s attributed to grout void formation due to bleed water formation and chloride presence.

• Subsequent specifications in FL include low bleed grout requirements.

• However, corrosion problems persist.

✓ Investigation of recent PT corrosion and repair issues are on-going. This presentation overviews current findings from field and laboratory explorations of deficient grout in tendons.
BACKGROUND:
PT Bridge in Florida built in 2002

- PT segmental bridge with int. and ext. tendons.
- Among first FL bridges to use low bleed grouts.
- Ext. Tendons placed to reduce tensile stresses in web. Anchor caps at low elevation.
- Severe corrosion in multiple ext. tendons. Failure occurred after ~8 years service.
- Severe corrosion accompanied by wet plastic grout.
Grout segregation characterized as:
- A. Wet plastic
- B. Sedimented Silica
- C. White chalky

 ✓ Corrosion attributed to wet plastic grout but not necessarily to void presence.
 ✓ Grout segregation created environment with dissimilar pore water chemistry and physical properties.
Segregated Grout Properties: Moisture Content

High moisture content associated with segregated grout.
• ~50% moisture in white chalky grout; ~70% moisture in wet plastic grout
Segregated Grout Properties: Pore Water pH

- Pore water of segregated grout typically retains high pH.
- No indication of processes to decrease pH such as carbonation.
- Regions with accumulation of corrosion products may contain localized low pH environments.

Regions with severe corrosion

† Prepared by Ex-situ Leaching Method
Segregated Grout Properties: Chloride Content

- Assuming threshold ratio $[\text{Cl}^-]/[\text{OH}^-] = 0.3$, and an upper measured free Cl concentration ~ 50 to 100 ppm, threshold pore water pH (<11.5-12) $< \text{observed pH values (typ. }>12$).

- Assuming 67% cement content in grout, upper range 0.3mg/g Cl would correspond to 0.05% cement which is $<<C_T$.

☑ Low chloride content associated with segregated grout. Below conventional chloride corrosion threshold concentrations.

• Accumulated chloride content in moist grout may be due to ionic transport.

• However, total chloride test preparation methods may over-sample size of segregated grout thus higher reported chloride concentrations.
Segregated Grout Properties: Grout Content

- Apparent enhanced presence of sulfurous compounds in segregated grout.
- Gypsum and ettringite identified as sulfur bearing crystalline compounds.
- Ettringite-filled voids visually predominant in segregated grout; however, identified in grout in vicinity of segregated grout as well.

✓ Possible indicator of enhanced sulfate presence segregated grout free water.
Segregated Grout Properties: Pore Water Content

- Sulfate concentrations as high as 9700 ppm measured in pore water.
- Apparent lower concentrations of Na\(^+\), K\(^+\), and OH\(^-\) and the higher Ca\(^{2+}\) concentration in the segregated grout than elsewhere.
Corrosion and similar deficient grout characteristics observed at low elevations, too.
CORROSION CONDITIONS IN SEGREGATED GROUT

Variation in open-circuit potential characterizing local anodes in wet plastic grout and passive steel elsewhere.

- Differences in OCP develop macrocell corrosion.
Macrocell Corrosion

- Corrosion activity in wet plastic grout.
- Anodic polarization of active steel due to coupling with passive steel enhances corrosion rates.
✔ Large anodic macrocell currents developed in lab tests of field samples.
✓ High sulfate concentrations appear to have negative impact on steel passivation.
Corrosion activity measured in lab samples with high concentration of sulfates.

20,000 ppm Na$_2$SO$_4$
✓ Corrosion activity measured in lab samples with high concentration of sulfates.
• Research is in progress to resolve the role of sulfates.
TENTATIVE PROPOSED CORROSION MECHANISM

- High water content was present in the grout.
- High water content carried higher concentrations of ionic species including sulfates and chloride ions. High concentrations of sulfurous compounds (sulfates in solution) were present in the grout.
- Segregated grout material provided poor corrosion protection for embedded strand that did not attain uniform stable passivity.
- Differential aeration condition present due to easy access to oxygen, vastly different moisture contents in localized regions, and strand interstitial spaces creating crevices.
- Accelerated corrosion was caused by macrocell coupling of local anodes in the strand embedded in segregated grout and extended cathode throughout the tendon.

WORK IN PROGRESS

- Identifying physical parameters of grout segregation mechanism.
- Resolving role of chloride, sulfates, and pH on steel depassivation in deficient grout.
- Identifying possible corrosion after repairs of deficient tendons.
CONCLUSIONS

- Segregated grout material was observed in localized portions of the tendons, characterized as: wet plastic, white chalky, and sedimented grout.
- High water content (up to 70 wt%) was measured in grout from localized portions of the tendons where corrosion occurred.
- Chloride accumulation was apparent in grout with high water content but concentrations were lower than conventional critical chloride threshold concentrations.
- No significant drop in pore water pH was observed in limited amount of sampling. However, slight depression of pore water (pH>11) from the wet plastic grout was apparent.
- Sulfate concentrations in the grout pore water were as high as 9700 ppm.
- Corrosion in segregated grout (signified by high moisture content, high porosity, and high sulfate concentrations) was likely accelerated due to macrocell coupling with extended cathode throughout the tendon.
ACKNOWLEDGMENTS

The work and assistance by Dennis Baldi, Will Blanchard, Matt Brosman, Jason Burchfield, Pat Carlton, Charles Ishee, Marc Knapp, Awilda Merced, Richard Nalli, Juan Rafols, Nikita Reed, and Yongyang Tang is acknowledged here.

Cooperative work with Michael Ahern, Andrew Gillis, Richard Lewis, Randy Poston, and Phillip Sharff and assistance by Marcus Lee and John Newton is also acknowledged.

QUESTIONS???