38800 Country Club Drive, Farmington Hills, MI 48331

Telephone: (248) 848-3180

Fax: (248) 848-3181

www.post-tensioning.org

ERRATA

PTI DC10.5-12 Standard Requirements for Design and Analysis of Shallow

Post-Tensioned Concrete Foundations on Expansive Soils

First Edition, First Printing, December 2012

DC-10 Slab-on-Ground Committee

The following errata items were added on 4/16/2014:

Page 6, Section 3.0 – Notation:

CR= prestress loss due to creep of concrete, lb kips.

ES = prestress loss due to the elastic shortening of concrete, <u>lb kips</u>.

Page 8, Section 3.0 – Notation:

 M_L = maximum applied service load moment in long direction from either the center lift or edge lift; positive if producing tension at bottom of foundation, negative if producing tension at top of the foundation, $\frac{\text{ft-lb/ft}}{\text{ft-k/ft}}$.

 M_s = maximum applied service load moment in short direction from either the center lift or edge lift; positive if producing tension at bottom of foundation, negative if producing tension at top of the foundation, $\frac{ft-lb}{ft}$ ft- $\frac{k}{ft}$.

 P_e = effective prestress force in tendon after losses due to elastic shortening, creep and shrinkage of concrete, and steel relaxation, $\frac{1}{100}$ kips.

Page 9, Section 3.0 – Notation:

 P_i = prestress force in tendon immediately after stressing and anchoring tendons considering effects of tendon friction, $\frac{1}{10}$ kips.

 P_r = effective prestress force in concrete after losses due to tendon friction, elastic shortening, creep and shrinkage of concrete, steel relaxation, and subgrade friction, $\frac{1}{10}$ kips.

 P_s = prestress force at jacking end immediately before anchoring tendons, $\frac{1}{N}$ kips.

Page 10, Section 3.0 - Notation:

SG = reduction in compressive force on concrete cross section caused by subgrade friction, lb kips.

SH = prestress loss due to concrete shrinkage, lb kips.

 V_L = maximum service shear force in long direction under service load from either center lift or edge lift, $\frac{1}{10}$ kips/ft.

 V_S = maximum shear force in short direction under service load from either center lift or edge lift, $\frac{1}{10}$ kips/ft.

 W_{slab} = foundation weight, $\frac{lb}{kips}$.

Page 22, Section 5.1.3 – Modified unsaturated diffusion coefficient α' :

$$\alpha'_{shrink} = (0.0029 - 0.000162S_S - 0.0122 \frac{\gamma_{h \text{ swett}}}{\gamma_{h \text{ shrink}}})F_f$$

Page 39, Section 8.3 - Edge Lift

Section 8.3.1 – Long and short direction : lower case "p" in the numerator changes to capital "P" and the exponent on y_m changes from 0.57 to 0.67

$$V_L = V_S = \frac{L^{0.07} h^{0.4} \frac{p^{0.03}}{p^{0.03}} P^{0.03} e_m^{0.16} y_m^{0.57 \cdot 0.67}}{3S^{0.015}}$$

Page 40, Section R8.4 – Allowable stress: capital "S" changes to lower case "s" in the denominator of the equation

$$\frac{A_v}{\$s} = \frac{(v - v_c)b}{0.4f_y}$$