SECTION 2

PT SYSTEMS

DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE

OUTLINE

- Unbonded and Bonded Post-Tensioning Comparison
- Unbonded Post-Tensioning:
 - Systems and equipment
 - Function of the coated tendon
 - Construction
- Bonded Post-Tensioning:
 - Various systems, components and equipment
 - Function of the grouted tendon
 - Construction
- Post-Tensioning Applications

UNBONDED AND BONDED PT COMPARISON

- Unbonded Post-Tensioning (PT)
 - Tendon is not bonded to the surrounding concrete
 - PT force is transmitted to the structure by means of the anchorages.
- Bonded Post-Tensioning (PT)
 - Tendon is bonded to the concrete
 - Bond is achieved throughout the length of the tendon by a cementitious matrix called grout.
 - Bond between the strand and the concrete is achieved through the duct after grouting
 - PT force at every section is a function of the deformation of the concrete (strain compatibility)

UNBONDED AND BONDED PT COMPARISON

- Applications: both systems are used in building and civil structures (bridges, containment structures, etc...)
 - In USA, unbonded is more common in buildings
 - Bonded is more common in civil structures
 - Both systems can be used as external post-tensioning
- Performance and durability: both systems provide comparable satisfactory results
- Selection of a system depends on:
 - Availability
 - Economics
 - Specific needs of each project

MAJOR CONSTRUCTABILITY DIFFERENCES

	Unbonded	Bonded
Fabrication of tendons in plant (extrusion & cutting to specific length)	Necessary	Not necessary but possible
Placement	Very practical and flexible. Easy to handle and does not necessitate heavy equipment	Very practical and flexible. Depending on application and system used, may require heavy equipment and reduced flexibility
Grouting	Not Applicable	Necessary
Stressing	Single strand stressing	Typically multi-strands with high stressing forces. Single strand stressing in specifc systems
Demolition	Requires special care	Straight forward (similar to regular reinforcement)

UNBONDED SYSTEMS

- Monostrand PT systems:
 - Coated strand
 - Coated anchors
 - Encapsulation accessories
 - Wedges

UNBONDED PT COATED STRAND

- The process of coating the strand is called extrusion
- Coated strand
 - 7-wire PC strand: ultimate strength f_{pu}= 270 ksi
 - Plastic sheathing: High Density Polyethylene (HDPE) or Polypropylene (PP)
 - PT coating: Corrosion inhibiting grease

UNBONDED PT ANCHORAGE

- Encapsulated anchorage
 - Prevent water infiltration and corrosion
 - Monostrand steel anchor coated with corrosion protection
 - Lockable encapsulation sleeves
 - Encapsulation cap to cover strand tails (ends)
 - Plastic pocket former

STEEL WEDGE

- Wedges are responsible of locking the strand after stressing so it holds the force
- Wedges are made of steel and have ductile core to adjust to strand shapes

FUNCTION OF STRAND COATING

- Function of the PT coating
 - Allow a bond free movement of the strand inside the sheathing.
 - Increase protection against corrosion and provide a non-conductive environment for corrosion
 - Reduce friction between the strand and sheathing
- Function of the sheathing
 - Provide corrosion protection to the strand
 - Provide encasement against damage and moisture penetration

UNBONDED PT STRESSING EQUIPMENT

Monostrand Stressing Jack

Stressing Pump

Gauge

UNBONDED PT CONSTRUCTION

- Tendon fabrication (PTI certified plants)
- Site installation
- Inspection and concrete placement
- Stressing operation

UNBONDED PT FABRICATION

- Tendon extrusion and cutting to length
- Tendon bundling
- Tendon color coding & labeling
- Loading and shipping to site

PROJECT DATA

NAME

LEVEL DRAWING REF : PT-2.06

PT TENDON DATA

: P16-09 to P16-29

UNBONDED PT INSTALLATION

- Placing of formwork
- Fixing of anchors to side formwork
- Installing chairs to profile heights shown on PT drawings
- Installing reinforcement and PT tendons

UNBONDED INSPECTION AND CONCRETE CASTING

- Inspect reinforcement and PT installation according to drawings
- Cast concrete
 - Thorough vibration around anchorages
 - Avoid damaging PT tendons
 - Proper curing

UNBONDED PT STRESSING

- Remove edge formwork
- Prepare tendons for stressing
- Check achieved concrete strength
- Stress tendons using calibrated monostrand equipment
- Fill out elongation records
- Approve elongations
- Seal tendons and patch pockets

- Several systems exist with main components being:
 - Bare Strands or Bars
 - Steel Anchorage Assemblies (bearing plates and wedge plates);
 proprietary designs
 - Plastic or Galvanized Metal Ducts
 - Steel Wedges
- Typically multistrands encased in grouted duct
- Bonded systems also known as grouted systems

FUNCTION OF GROUTED DUCTS

- Function of the duct
 - Maintain a voided path for strands during construction
 - Transfer the bond between the grout & the concrete
 - Act as additional corrosion protection against penetration of moisture and chemicals
- Function of the grout
 - Provide a continuous bond between the strand and the duct
 - Increase protection against corrosion
 - Provide a non-conductive environment for corrosion

- High capacity multistrand systems used in civil structures and transfer beams or slab construction
- Main components
 - Bare strands
 - Multistrand anchorage assembly
 - Round corrugated duct
 - Grout accessories(cap, shut-off valves vents, etc...)
 - Wedges

Flat systems used typically in thin concrete elements and slab

construction

- Main components
 - Bare strands
 - Multistrand anchorage assembly
 - Flat corrugated duct
 - Grout accessories(cap, vent tubes, etc.)
 - Wedges

- Bar systems:
 - PT bar
 - Steel anchor
 - Duct
 - Grout accessories

- Single strand anchor
- Round duct
- Wedge
- Grout accessories

BONDED PT STRESSING EQUIPMENT

Stressing Jack

Stressing Pump

Grouting Machine

BONDED PT CONSTRUCTION

- Installation
- Inspection and concrete placement
- Stressing operation
- Grouting operation

BONDED PT SYSTEMS INSTALLATION

- Placing of formwork and side shutter
- Fixing of bearing plates
- Placing of ducts and reinforcement
- Profiling ducts according to drape specified on PT installation drawings
- Placement of strands inside duct (can be done before or after casting of concrete)

Beam/Bridge Construction

Slab Construction

INSPECTION AND CONCRETE PLACEMENT

- Inspect reinforcement and PT installation according to placement drawings
- Cast concrete
 - Thorough vibration around bearing plates
 - Avoid damaging PT tendons
 - Proper curing

BONDED PT SYSTEMS STRESSING

- Remove edge formwork
- Prepare tendons for stressing
- Check achieved concrete strength
- Stress tendons using calibrated equipment
- Fill up elongation records
- Approve elongations

BONDED PT SYSTEMS GROUTING

- Check ducts for blockage
- Grout and seal tendons
- Record grouting results
- Check vents for grout adequacy

PT APPLICATIONS: 2-WAY SLABS

Photo Courtesy of Seneca Structural Engineering Inc.

PT APPLICATIONS: TWO-WAY SLABS

PT APPLICATIONS: SLABS-ON-GROUND

PT APPLICATIONS: MAT FOUNDATIONS

PT APPLICATIONS: INDUSTRIAL FLOORS

PT APPLICATIONS: PARKING STRUCTURES

PT APPLICATIONS: GROUND ANCHORS

PT APPLICATIONS: STORAGE STRUCTURES

PT APPLICATIONS: STRENGTHENING

Photo courtesy of Seneca Structural Engineering

PT APPLICATIONS: STRENGTHENING

Photos courtesy of:

RALPH WHITEHEAD ASSOCIATES. In
Consulting Engineers.

