SECTION 4

LOSS OF PRESTRESS

EMPHASIS ON ITEMS SPECIFIC TO POST-TENSIONED SYSTEMS

DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRIAN SWARTZ

LOSS OF PRESTRESS

- Friction
- Elastic shortening
- Anchor set
- Shrinkage
- Creep
- Relaxation

Initial losses

Specific to post-tensioning

Time dependent losses (Long term losses)
Similar to pre-tensioning

STRESSING OF PT STRANDS

The stressing jack bears against the concrete

- Concrete is compressed gradually as the strand is tensioned
- Many things occur simultaneously
 - Stressing, friction, elastic shortening

FRICTION LOSSES

Dead End Force < Live End Force

<u>Idealized</u> <u>Reality</u>

Duct/Strand Cross-Section

FRICTION LOSSES

- Monitor elongation in addition to pressure during stressing
- Overcoming friction:
 - Over-tensioning (limited)
 - Stressing from both ends

FRICTION LOSSES

- Calculating losses
 - Function of:
 - Curvature friction coefficient
 - Angular change over length of strand
 - Wobble friction coefficient
 - Length from jack to point of interest
 - Reference:
 - Post-Tensioning Manual, Appendix A

ELASTIC SHORTENING LOSSES

ELASTIC SHORTENING LOSSES

- Shortening of concrete compressed during stressing as the two occur simultaneously
- If only one strand (tendon) no ES losses
- If multiple strands (tendons)
 - Tendons stressed early in the sequence will suffer losses as subsequent tendons are stressed
 - The first strand stressed will suffer the most total loss
 - The last strand stressed has zero loss
 - Reasonable to take the average of first and last

ELASTIC SHORTENING LOSSES

Assume: Perfect bond between steel and concrete \rightarrow $\epsilon_p = \epsilon_c$

Strain in the concrete, due to compressive stress applied:

$$\epsilon_c = \frac{f_{cgp}}{E_{ci}}$$
 —— Concrete stress at prestressing centroid —— Concrete elastic modulus at time of stressing

Substitution through previous steps

$$\Delta f_{pES} = \frac{N-1}{2N} \left(\frac{E_p}{E_{ci}}\right) f_{cgp}$$

Average of first and last strand that experience loss; the last strand tensioned has zero loss, hence the (N-1) term.

ANCHORAGE DEVICES

ENCAPSULATED ANCHOR

ENCAPSULATED ANCHOR

WEDGES

ANCHORAGE DEVICES:

HOW ARE STRANDS ANCHORED?

ANCHORAGE SEATING LOSS

ANCHORAGE SEATING LOSS

- Calculating losses
 - Some of the imposed strain on the strand is lost when the wedge seats in the plate
 - Function of:
 - Hardware used
 - Type of stressing jack (Power seating, etc.)
 - Reference: Post-Tensioning Manual, Appendix A

- The variable prestress force in the previous slide is negligible for:
 - Strands less than 100 feet (single-end stressed)
 - Strands less than 200 feet (both ends stressed)
 - Reference: Bondy, K.B., "Variable Prestress Force in Unbonded Post-Tensioned Members," Concrete International, January 1992, pp. 27-33.

SHRINKAGE, CREEP, AND RELAXATION

CONCRETE SHRINKAGE

Moisture

$$\varepsilon_{sh} = \frac{\Delta L}{L} = \frac{L - L}{L}$$

CONCRETE SHRINKAGE

CONCRETE CREEP

Shrinkage Specimen

Creep Specimen

Concrete shortening due to sustained compression

CONCRETE CREEP

CONCRETE CREEP

Creep strain is calculated by a creep coefficient, $\psi(t,t_i)$, that expresses creep strain as a function of elastic strain.

STEEL RELAXATION

- A loss of stress in the steel after being held at a constant elongation (sustained tension)
- For low-relaxation steel (industry standard)
 relaxation losses are very small compared to
 other loss components (~1-3 ksi)

