Shelf life of prepackaged Post-Tensioning Grouts

Marcelino Aguirre (Marc) Prof. Trey Hamilton, Univ. of Florida Lt. Brett Brunner, USAF

Outline

- Introduction to PT grout
- FDOT Project Objective(s) and Scope
- What we know about cement hydration?
- Prehydration cause and effect on cement
- Shelf life Test method(s) for Age and Exposure Conditions in addition to MITT for soft grout
- Preliminary Results
- Research direction going forward

PT Grout

Purpose

- Transfer PT force
- Strand Protection
- Issues
 - Soft grout (unhardened)
 - High Chloride Levels
 - ✓ Voids
 - Bleed water
 - Segregation

Unhydrated material with putty consistency

At 24 hour set

PT Grout Research Goals

- Project Objective
 - Explore the cause of bleed and segregation on plain and commercial PT grout
- Scope
 - Effect of age, heat, humidity and pre-hydration on cement and admixtures
 - Sensitivity of admixtures and SCM to age
 - Properties of expired grout
 - Packaging, storage, transport
 - Field test(s) for evaluating Shelf-Life

Hydration of Portland Cement

Calcium hydroxide(CH)

Prehydration of Portland Cement?

7/42

(Winnefeld) Empa, Swiss Federal Laboratories for Materials Testing and Research, Dübendorf/Switzerland

Effect of Prehydration

Environment heat and humidity

Cement sensitivity to RH% varied by microstructure

Figure 3. Water vapour sorption isotherms of cubic and orthorhombic C_3A , determined on a sorption balance at 20°C using ramp mode and measured over a period of 11 h

Whittaker, M. D.-M. (2013). The effect of prehydration on the engineering properties of CEM I Portland. Advances in Cement Research.

Cement Pre-hydration

Cause
Storage conditions

- ✓ Age
- ✓ Temperatures >65°F
- ✓ RH >55%
- Effects on Grout
 - Bleed Water
 - Segregation
 - Delayed set

FLORIDA 9/42 Soft grout formation

Research Approach

- Exposure (age, relative humidity and temperature)
- Soft grout
 - Modified Inclined Tube Test (MITT)
- Particle size
 - Particle Size Analyzer (PSA)
 - ✓ Blaine Fineness (BF)
 - Thermogravimetric analysis (TGA)
 - Loss of Ignition (LOI)
- Determine if grout has expired
 - This will examine packaging and exposure

 Effect of age and environment on prepackaged PT Grout

Expiration Ratio: *age of bagged material at mixing shelf life*

Laboratory: 65°F, 50-75% RH

Field: Covered

outdoor in

Gainesville, FL

Walk-In Chamber: 95°F, ~88 % RH

Closet Chamber: 95°F, 95% RH

Soft Grout Results – Field/Laboratory

- No grouts, except PT4, formed soft grout in Laboratory conditions at $R_{exp} < 1.0$,
- All grouts, except PT1, eventually formed soft grout in both conditions at $R_{exp} > 1.0$
- Soft grout production: Field storage> Laboratory 300 storage PT1 Laboratory

Bleed found in MITT

Soft Grout Results – Extreme

- Soft grout formed under Extreme conditions
- ◆ PT5, PT7 not set at 24 hours ____

FLORIDA

13/42

Delayed set

Severe pre-hydration

Soft grout found in MITT

Particle size - PSA

 Mean particle size increased over time for all grouts exposed to Extreme conditions (95°F, 88-95% RH)

Particle Size - Blaine Fineness

- Blaine Fineness Test
 - *BF_{ratio}* decreased over time for all grouts exposed to Extreme conditions (95°F, 88-95% RH).

Particle size – LOI/TGA

FLORIDA

 Particle mass loss increased over time for all grouts exposed to Extreme conditions (95°F, 88-95% RH)

Packaging Effectiveness

- Packaging dimensions and layer schemes were very similar across all manufacturers investigated.
- The degree of perforation and the methods used to close the corners of the bags varied from one manufacturer to another.

PT3 Layering

PT7 Layering

PT3 perforation

PT7 micro-perforation

PT3 closing corner

Findings to Date

- High temperature and relative humidity increased soft grout.
- Prolonged storage increased soft grout at all storage conditions
- Mean particle size and particle size distribution increases over time (95 °F, 95% RH)
- Mass gain is exponential with exposure time

Possible test(s) for Shelf Life Evaluation

- Blaine Fineness
 - Particle surface area change with Age and storage condition

LOI/TGA

 Oven heating cement material to determine mass loss due to prehydration

DSR

- Measure fluidity
- Direction for ensuring quality packaging and storage practices

Summary

- Grout mass change is a result of storage conditions
- Packaging effects of perforation and bag closing influence grout protection
- Loss of Ignition and Thermogravimetric analysis are areas to explore
- Field testing on cements robustness

Thank you

