WALTER P MOORE

THE USE OF NDE AND ANALYTICAL TOOLS IN POST-TENSIONING REPAIRS

April 27, 2015

Gabriel A. Jimenez, Ph.D., P.E., S.E., P. Eng. Senior Principal / Executive Director, Diagnostics Group

Houston, Texas

What is Nondestructive Evaluation?

Methods for assessing the condition of a structure without causing any structurally significant damage.

Destructive vs. Nondestructive

When is Nondestructive Evaluation Used?

- Quality control of new construction
- Condition assessment of structures
 - Rehab
 - Due diligence
 - Change of use
- → Quality control of repairs
- → Identify as-built construction

What are Types of NDE Methods?

- → Visual
- → Short pulse radar
- → Stress wave
 - Impact-echo
 - Impulse response
 - Ultrasonic pulse velocity
- → Electric & Magnetic
 - Half-cell potential
 - Cover meters
- → Infrared
 - Thermography

Short Pulse Radar (SPR)

- Commonly known as GPR *Powerful Tool*
- Reflected electromagnetic waves
- Applications
 - As-built conditions
 - Rebar size and location
 - Voids beneath slabs
 - Post-Tensioned cable profiles
 - Honeycombing

Limitations

- Wet soils
- Cannot detect small discontinuities

SPR Schematic

Ground-penetrating radar

CASE STUDY #1

• A slab deflection of approximately 54 mm at the turning bay and a camber of approximately 22 mm in the adjacent end bay span were observed in the northwest quadrant of the roof level ramp.

 Assessment of the parking facility which included visual observations, limited destructive and non-destruction testing, and analysis to determine its present condition

Excerpt of the record structural drawings for the roof level floor framing

Typical Structural Framing

Typical view of structural members

3-D analytical model representation of the facility structural members for the vertical load carrying system.

Roof Level

VIEW OF 3D MODEL FOR POST TENSION ANALYSIS OF EXISTING STRUCTURE

3-D analytical model representation of the roof level structure

Visual Observation Photographs

Exploratory openings of tendons in areas of observed distress (slab cracking, deflections) revealed detensioned and loose post-tensioned tendons in addition to the failed tendon observed at the roof level slab soffit.

Screw drive penetration test indicating a de-tensioned PT tendon on the ramp at the Roof Level

Screw drive penetration test indicating a de-tensioned PT tendon on the flat portion of the Roof Level

Ground Penetrating Radar Survey

A Ground Penetrating Radar (GPR) survey was performed at selected areas of the roof level floor slab to determine the as-built post-tensioning tendon profiles.

Ground Penetrating Radar Survey

Individual vertical tendon profiles were determined for each tendon in the scan areas and were plotted against the design tendon profiles specified in the record drawings.

Structural Analysis

- → A structural analysis was performed based upon three structural configurations and the loading requirements of applicable code
 - Case I Analysis of the original design

Structural Analysis

- → A structural analysis was performed based upon three structural configurations and the loading requirements of NBC 2005.
 - Case II Analysis of the as-built structure based upon information for tendon profiles obtained from the GPR survey.

Structural Analysis

- → A structural analysis was performed based upon three structural configurations and the loading requirements of NBC 2005.
 - Case III Analysis of the as-built structure with consideration of the effects of the observed post-tensioned tendon distress.

Repairs

Repairs

NOTES NON-DESTRUCTIVLY LOCATE EMBEDDED REINFORCEMENT PRIOR TO INSTALLATION OF NEW POST INSTALLED CONCRETE ANCHOR. DO NOT DAMAGE EXISTING EMBEDDED REINFORCEMENT.

CASE STUDY #2

Concrete Parking Garage Repair Description of Structure

- Constructed 1978
- Cast-in-place concrete structure
- Unbonded post-tensioned pan joist framing
- Repairs deferred!

Observed Distress

Cracking and Spalling in Overhead Concrete Pan on Roof Level

Column Distress on Level 1 Concrete Distress and Post-Tensioning Tendon Corrosion at Roof Joist

Ultrasonic Pulse Velocity (UPV)

- Wave speed through concrete
- Applications
 - Delaminations
 - Unconsolidated Concrete
 - Concrete material properties

• Limitations

- Access to both sides
- Qualitative

UPV Schematic

Suspected Concrete Quality

TEST LOCATION HIGHLIGHTED IN YELLOW

TEST LOCATION HIGHLIGHTED IN YELLOW

Extent of Damage – Parking Structure

Time (µs)

15

UPV Testing of Roof Level Joist

Roof Joist Repair in Progress

Surface Preparation for Repairs to Roof Joist

Roof Joist – Installation of Supplemental Reinforcement / Shear Connectors, Repair of PT Sheathing

Final Repairs

Repaired Column

Repaired Roof Joist

Case Study #3

Half-Cell Electrochemical reaction Galvanic corrosion

- $2Fe \rightarrow Fe^{2+} + 2e^{-}$
- $2H_2O + O_2 + 4e^- \rightarrow 4OH^-$

→ Measure electrical potential

Corrosion

Example – Half Cell Potential Testing

1) PLAN VIEW: HALF-CELL POTENTIAL RESULTS NTS

Performance Modeling

Performance Modeling

A final thought....

Better information = Better Decisions

Better Solutions

THANK YOU