Where are the Stay Cables?
An Investigation.

Khaled Shawwaf
Technical Director & Vice President (Retired)

2015 PTI Convention- Houston, April 26-28
The first known drawing of a cable stayed bridge: by Fautus Verantius, ~1595, Venice
Span estimated about 30 meters

The first modern cable stayed bridge!
Stromsund Bridge, 1956 - 182 m

The longest cable stayed bridge!
Russky Bridge, 2013 - 1104 m
Cable Stayed Bridges are very efficient and visually attractive!

As spans get longer there are increased demands on the performance of the stay cables.

- Longer spans are more flexible
- Large displacements & rotations
- Longer cable lengths result in large changes in sag

Cable systems should have enhanced performance to meet these demands.
• In the **global analysis** of the bridge, cables are usually modeled as line members with axial stiffness only - Hinge ends!

• This is acceptable and leads to accurate results for the sectional forces of the bridge members and the **axial forces** in the cables.

• In reality, cables have a significant flexural stiffness and are subjected to static and fatigue **bending stresses** that may be significant - Fixed ends!

What causes these bending stresses?
PERMANENT BENDING STRESSES, \(f_c \):
Fabrication and construction tolerances
• *Discussed in this paper!*

VARIABLE BENDING STRESSES, \(f_v \):
Angle Change at the anchors due to:
 - Change in axial force and sag
 - Structural displacements and rotations
 - Differential temperature
 - Cable oscillations
• *Not discussed in this paper!*

DEVICES TO REDUCE BENDING STRESSES, \(f_v \):
Elastic supports for strands at anchorages
• *Discussed in this paper!*

\[2 \cdot \varphi \cdot \sqrt{E \cdot \sigma_d} \]
Bending stresses are independent of cable stiffness!
Section 4.2: Acceptance Testing of stay cables

Tests of 3 representative stay cable specimens shall be carried out...

...The anchorages of the stay cable specimens shall be supported on wedge-shaped shim plates, creating angular deviations of 0.01 radians...

Test: 2 million cycles of fatigue loading and subsequent tensile strength
Mexico: To correct deviation the recess pipe was cut and bent about 20 degrees. Discovered by DSI during inspection some years after bridge completion.

USA: East Coast. No room to place the neoprene bearing discs. Heat bending was considered to realign the pipe.

USA: Bridge in Midwest. Cable deviation was too large. Pipe cut at top of deck, welded to oval plate and bolted down.

Things don’t always work out!

How large are actual cable deviations?

No data is available!

During construction of Pitt River Bridge, DSI measured the position of all 96 cables at the tower and deck level after final stressing.
• Pitt River Bridge, Vancouver, BC: 96m + 190m + 96 m. Composite steel deck & concrete towers.
• Cables: Middle plane ~60 strands and sides are ~30 strands; 8 cables each side of towers. Total= 96.
• Cables cross each other in the towers and anchored in a welded steel assembly at the deck.
Strands compacted into hex pattern

Tower showing steel Exit pipes & stressing tails

Measuring device bolted to anchorage at deck level

Bolted clamp - with exit and recess pipes
Measurement Data, mm
• 96 measurements each at towers and deck = 192 Total
• Location of measuring points from face of anchors: Towers: 3.13 to 5.35 m
 Deck: 1.42 & 1.98 m
Limit shown in red: 25 mm
• Differences between Deck and Tower!
• Accuracy ± 5 mm!
Horizontal Deviations, X mm:
• Almost perfect bell curve
• Variation between -30 to +30 mm
• About 74% are less than < 10 mm
• Only influenced by setup accuracy

Total number of Data: 192

Vertical Deviations, Y mm:
• Unsymmetrical distribution
• Variation between -50 to +50 mm
• About 37% are less than < 10 mm
• About 62% are +ve: High
• Influenced by many factors!
Radial Deviations, D mm:

- About **33%** > 25 mm and **7.8%** > 35 mm. Maximum deviation **55 mm**
- Excessive deviations makes it difficult to install neoprene bearings and dampers
- Adjustability should be provided to accommodate these deviations!
- How was this provided in Pitt River Bridge cables?

Total Number = 192:
96 readings each at the towers and deck level
Cable adjustability for the Pitt River Bridge:

- Compressed neoprene discs act as visco-elastic damper – Short & medium length cables
- Based on field measurements, eccentric holes were cut in the neoprene discs
- This allowed large adjustability without changes to the recess/exit pipe connection flange
- Holes in neoprene discs are cut by water jet: accurate and fast. Accommodated 55 mm!
Angle Deviations, ϕ degrees:

- About **28%** > 0.6 degrees, and **8.9%** > 0.8 degrees
- Some deviations exceed the values used in the PTI cable acceptance tests!
- Impact of temperature and actual cable force on cable position and measurements!
- Built in angle deviations ϕ cause permanent static bending stresses in the strands
- Permanent bending stresses cause fretting that may reduce strand fatigue life
- Let us take a look at bending stresses that occur during service stage

Bending stress:

$$2 \cdot \phi \cdot \sqrt{E \cdot \sigma}$$
Cable bending stresses during service are due to angle changes in the cables.

Consider an angle change $\varphi = 1.0$ degree $= 0.0175$ radians
Axial stress in the cable $\sigma_a = 0.4$ fsu $= 744$ Mpa
Elastic modulus of the strands $E = 195,000$ MPa

Bending stress at the anchorage $= 2 \cdot \varphi \cdot \sqrt{E \cdot \sigma_a}$

$= 422$ Mpa $= 0.23$ fsu

• Some measures are provided to reduce this bending stress. How?
• Provide flexible support to the strands some distance in front of the wedges!
Cable Bending Stresses - Vary k & a:

- Angle change 1.0 degree
- Axial load N = 0.4 Pu (PTI allowable 0.45)
- Effects of support location a: 300 & 600 mm
- Effects of support stiffness k: 1000 & 5000 kN/m
- Stress at anchor reduces to less than 20%
- Stress at support about half of k = 0!
- Design stress at support is less than peak shown

Support Stiffness:
- No Support, k = 0
- k = 1,000 kN/m
- k = 5,000 kN/m
Neoprene discs inside anchors are compressed after strand installation. Provide flexible lateral support to the strands and seal the anchor body.

Visco-elastic (rubber) damper installation becomes difficult with large deviations.
Effects of cable axial force on Bending Moments:

- Angle change = 1.0 deg & Support stiffness = 1,000 kN/m
- Flexible support location at 300 mm from wedges
- When N = 0, cable behaves like a beam: simple bending
- Axial force tends to magnify and localize bending

Cable Bending: complex interaction between \(N\), \(k\) and support location ‘a’
Clevis Cable System
7 to 91 Strands

There is a way to avoid Bending Moments in Cables by using Clevis anchorages
SUMMARY: Cable Bending

• Imposed rotations at ends cause bending stresses in cables

• Axial force magnifies & localize bending stresses in stay cables

• Fabrication and construction tolerances result in permanent bending stresses

• Field measurements of cable deviations were made on 192 anchorages

• During service, angle changes at ends cause transient bending stresses:
 * Structural displacements & rotations due to Live Loads
 * Sag variations due to LL and differential temperature
 * Cable oscillations- wind induced and parametric

• Bending stresses impact the Strength and Fatigue design of cables

• Cable anchorages should include means to reduce bending stresses
Thank You