Pour Strips Elimination at the Upper Levels in PT Parking Structures

Presented by Rashid Ahmed, P.E., S.E. Walker Parking Consultants

April 28, 2015
Pour Strips

Pour Strips are provided to temporarily isolate the post-tensioned floor system from restraining columns or walls to reduce the effect of volume changes on the structure.
Pour Strip
Benefits of eliminating the pour strips

- Pour strips require extra mild reinforcement. Elimination of pour strips minimizes the reinforcement.
- Simplified forming - no or fewer re-shoring is required, which frees’ up floor space and reduces obstacles for all trades
- No special concrete mixes are required (mixes that require polypropylene fibers)
- Narrower width of traffic topping is required (typically a 6-ft. wide traffic topping over the pour strip can be reduced to a 2-ft. wide traffic topping at the construction joint)
Benefits of eliminating the pour strips (cont.)

- Elimination of one sealant joint per strip, plus all the orthogonal joints
- Fewer joints mean less maintenance
- Safer working environment as there is no opening (hole) in the slab
- Potential of saving two weeks in schedule, usually at the end of the project
Pour Strips

- Design pour strips as cantilevers to simplify intensive re-shoring operations
- Recommend keeping the pour strips at the first supported level, but eliminate at upper levels
Pour Strips

Per Post-Tensioning Manual, 5th edition, figure 5.25:
About 40 percent of shrinkage or creep takes place within the first 28 days

Fig. 5.25 — Approximate proportion of final shrinkage or creep vs. time
CONTRIBUTION OF DIFFERENT FACTORS TO TYPICAL SLAB SHORTENING*

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>PERCENTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHRINKAGE</td>
<td>66 %</td>
</tr>
<tr>
<td>CREEP</td>
<td>11 %</td>
</tr>
<tr>
<td>ELASTIC SHORTENING</td>
<td>7 %</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>16 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100 %</td>
</tr>
</tbody>
</table>

*For a parking structure in Southern California
Source: Restraint Cracks and their Mitigation in Unbonded Post-Tensioned Building Structure
By Bijan O. Aalami and Florian G. Barth, Post-Tensioning Institute, 1988
CONTRIBUTION OF DIFFERENT FACTORS TO TYPICAL SLAB SHORTENING WITH A POUR STRIP STRIPE

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>MOVEMENT inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 TO 28 DAYS BASED ON HALF STRUCTURE</td>
<td>BEYOND 28 DAYS BASED ON FULL STRUCTURE</td>
</tr>
<tr>
<td>SHRINKAGE</td>
<td>0.13</td>
</tr>
<tr>
<td>CREEP</td>
<td>0.02</td>
</tr>
<tr>
<td>ELASTIC SHORTENING</td>
<td>0.07</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>0.22</td>
</tr>
</tbody>
</table>
Pour Strips

In our example the movements are as follow:

• Equivalent movement at each end = 0.95” without pour strip
• Equivalent movement at each end = 0.85” with a pour strip that remains open for 28 days
Pour strip at all tiers

SAP2000

SAP2000 v9.0.8 - File:Frame-3bay_5Story_0.85 - Longitudinal Reinforcing Area (ACI 318-99) - Kip, in, F Units
Pour strip at first supported tier only
Pour strip at all tiers

$\Delta = 0.85''$

$\Delta = 0.85''$

$\Delta = 0.85''$

$\Delta = 0.85''$

$\Delta = 0.85''$
Pour strip at first supported tier only

Δ = 0.95”

Δ = 0.95”

Δ = 0.95”

Δ = 0.95”

Δ = 0.85”
Thank You