

Using Genetic Algorithms in Design of Post-Tensioned Structures

Jonathan Hirsch, P.E.

Outline

- The post-tensioning design problem
- Modern post-tensioning design approach
- Genetic algorithm fundamentals
- Application of genetic algorithm to the post-tensioning design problem
- Practical application to real world design

- Design Criteria
 - Strength (flexure, shear)
 - Serviceability (cracking, deflections)
 - Initial (transfer of prestress)
 - Minimum (precompression limits, minimum reinforcement)
- Understanding the suitability of a solution
 - Design Criteria Satisfied
 - Performance
 - Economics

- Changes in one span/bay affect other regions
- Design parameters are interdependent
- Virtually infinite number of valid designs
 - Combinations of PT quantity, PT profiles, rebar quantity, studded shear reinforcement, etc.
 - Different tendon layouts in irregular slabs
 - Member thickness too!
 - Finding a valid design is often time consuming

Modern Approach to PT Design

- 1. Select slab thickness based upon span/depth ratio
- 2. Provide post-tensioning to satisfy minimum provisions
- 3. Add post-tensioning to satisfy flexural tensile stresses
- 4. Design supplemental rebar required
- 5. Design for punching shear
- 6. Check service criteria (deflection, etc.)
- 7. Iterate as required

- More PT
- Less Rebar and SSR
- End CGS slightly away from mid-depth
- Cost savings of 9%

What if?

Genetic Algorithm

- Fitness value calculated for each chromosome used to determine the suitability of each
- Fittest in each population crossed to create next generation

- Fitness value = PT cost + Rebar cost + SSR cost (materials and labor)
- Cost penalties can be added to discourage particular aspects of a solution
 - Failed cross section code check
 - Excessive deflection
- Other possibilities include:
 - Concrete/rebar material strength
 - Slab/beam member sizes
 - Tendon layout

Concrete Costs								
Materials:	100	per	yd³	x	175.1	yd³	=	17510
Labor:	50	per	yd³	x	175.1	yd³	=	8754
Total:	150	per	yd ³	x	175.1	yd ³	=	26260
Post-Tensioning	g Costs							
Materials:	1	per	pounds	x	3845	pounds	=	3845
Labor:	0.5	per	pounds	x	3845	pounds	=	1923
Total:	1.5	per	pounds	x	3845	pounds	=	5768
Formwork Cost	s							
Materials:	1	per	ft²	x	5669	ft²	=	5669
Labor:	1	per	ft²	x	5669	ft²	=	5669
Total:	2	per	ft²	x	5669	ft²	=	11340
Mild Steel Reinf	forcina Costs							
Materials:	1000	Der	tons	v	1 839	tons	_	1830
Labor:	1000	ner	tons	Ŷ	1.839	tons	=	919 3
Tatak	500				1.000		-	2250
TOLAL	1300	per	tons	x	1.039	tons	-	2730
SSR Costs								
Materials:	2	per	stud	x	408	studs	=	816
Labor:	1	per	stud	x	408	studs	=	408
Total:	3	per	stud	х	408	studs	=	1224
Total Costs								
Materials:	5.235	per	ft²	x	5669	ft²	=	29680
Labor:	3.117	per	ft²	x	5669	ft²	=	17670
Total:	8.352	per	ft²	x	5669	ft²	=	47350

Concrete Costs											
Materials:	100	per	yd³	x	175.1	yd³	=	17510			
Labor:	50	per	yd³	x	175.1	yd³	=	8754			
Total:	150	per	yd₃	x	175.1	yd³	=	26260			
Post-Tensioning Costs											
Materials:	1	per	pounds	x	4083	pounds	=	4083			
Labor:	0.5	per	pounds	x	4083	pounds	=	2041			
Total:	1.5	per	pounds	x	4083	pounds	=	6124			
Formwork Costs											
Materials:	1	per	ft²	x	5669	ft²	=	5669			
Labor:	1	per	ft²	x	5669	ft²	=	5669			
Total:	2	per	ft²	x	5669	ft²	=	11340			
Mild Staal Dainfavoing Casts											
								42.02			
Materials:	1000	per	tons	x	1.383	tons	=	1383			
Labor:	500	per	tons	x	1.383	tons	=	691.3			
Total:	1500	per	tons	x	1.383	tons	=	2074			
SSR Costs											
Materials:		ner	stud	x	0	studs	_	0			
Labor	2	ner	stud	x	ů	stude	_	ů			
	1	per	stuu	~	•	stuus	-				
Total:	3	per	stud	x	0	studs	=	0			
Total Costs											
Materials:	5.052	per	ft²	x	5669	ft²	=	28640			
Labor:	3.026	per	ft²	x	5669	ft²	=	17160			
Total:	8.079	per	ft²	х	5669	ft²	=	45800			

Manual Design

Optimized Design

Practical Application

- 50,000+ sf real world post-tensioned slab
- Approximately 28.5' typical spans
- 8" thick slab down to 6" minimum thickness in balconies
- 18" x 24" typical column size

Practical Application

Practical Application

To the cloud!!!

Portability

Advantages of Optimization

- Reduced design labor
- Comparison of many (thousand) designs to allow choice of optimal solution
- Fitness function can be written to include many parameters
 - Material and labor costs (PT, rebar, SSR, concrete)
 - Can include penalties for failed design criteria
 - Can include penalties to avoid undesirable performance aspects
- Can be run in the cloud to minimize solution time and not tie up the desktop

Future Work

- Calibrate failure penalties
- Further testing of cloud computing aspects
- Test genetic optimization parameters
 - Population size
 - Number of crossover points
 - Probability of creeping mutations
- Investigate other optimization algorithms

Questions?

Jonathan.Hirsch@Bentley.com

