

SLAB ON GROUND DESIGN LESSONS LEARNED

By: Don Illingworth

IMPORTANT FACTORS IN SLAB ON GROUND DESIGN

History of SOG

Became common in early 1950's
BRAB Report 1968

PT Introduction Mid 1960's

HUD Approval 1968

PTI Research 1975 @ Texas A&M

- 1st PTI Design Manual 1980
- **2**nd ED 1996
- **3**rd ED 2004
- **PTI STD 2012**

Wire Reinforcement Institute (WRI) updated 1996

Post-Tensioning Institute's Slabs-On-Ground Design Publications

"1st Edition Manual" Published in 1980

DESIGN AND CONSTRUCTION OF POST-TENSIONED SLABS-ON-GROUND

"2nd Edition Manual" Published in 1996

PTI DESIGN PROCEDURE

3rd Edition Manual and Standards Addendum #1 (May 2007) Addendum #2 (May 2008)

The Addenda generally reduced the conservatism of the 3rd Edition by:
Providing clarification and guidance regarding new geotech provisions
Modified boundary conditions of new geotechnical provisions.
Changes to structural equations (Stiffness and Cracked Section).

PTI DESIGN PROCEDURE

PTI DC10.1-08

Design of Post-Tensioned Slabs-on-Ground ^{3rd Edition} with 2008 Supplement

3rd Edition Manual with 2008 Supplement

Includes both addenda and errata

(three errata issued after publication of supplement)

ACI 318-05

R1.1.6 excludes residential post-tensioned SOG and refers their design to PTI 3rd Edition

IBC 2006

For all practical purposes, only PTI and WRI methods are acceptable for foundations on expansive soils (1805.8.2)

Moments, shears, deflections calculated for one method can be used in the other

NFPA

Will be rarely used, CA recently reversed original decision and will adopt I-codes

PTI DESIGN PROCEDURE

Since first publication of 3rd Edition, PTI also released 4 Frequently Asked Questions documents and 1 Technical Note applicable to slab-on-ground design and construction.

*FAQ No. 5 - Shrinkage and Temperature Reinforcement
*FAQ No. 6 - Field Elongation Measurements
*FAQ No. 7 - Soil Suction Profiles for Slab-on-Ground Applications
*FAQ No. 8 - Back-Up Bars for Slab-on-Ground Applications
*Tech Note 15 - Thicker is Weaker?

Foundation Based on Soil

Non Expansive PI<15-20 (Stable)

- Oniform thickness or shallow beams
- Reinforced for crack control
- PT average compression 50-75 psi

Moderate to High Expansive

- PI~20-50 PVR up to 4.5"
- Uniform thickness
- Waffle slab with beams
- Both designed for expansive soil

Highly Expansive

Treat soil to reduce movement or structurally suspended foundation

Type of Structure on Foundation

Residential

- Stiffness important
- **Warehouse**
 - Stiffness less important
 - Crack control
- Commercial
 - Stiffness important

Owner Expectations

FOUNDATION TYPES

Ribbed Foundation

Pros

Structurally efficient with less materials.

Does not rely on under slab fill for support (less earthwork).

Cons

Labor intensive.

Requires trenching into grade or forming fill.

FOUNDATION TYPES

Uniform Thickness Foundation

Pros

Does not require trenching into grade or forming fill (some parts of country use 7.5 inch thick slab with no turn down).

Cons

Requires more concrete and post-tensioning cables.

- Requires significant earthwork.
- Sloping sites present problems.

Design Principles

PTI Soil-Structure Interaction

Edge Lift
 Center Lift

Envelope Design for Cases in Between

Selection of Reinforcing System

Post-Tensioning

- Uniform size and shape with minimum elevation difference
- Rebar
 - Unusual shapes, large slabs, with multiple elevation changes

Important Items in Soils Report

 PTI

 * Em
 Edge Lift

 Center Lift

 * Ym
 Edge Lift

 Center Lift

 % Swell

Q Allowable Bearing Pressure

Important Site Considerations

Pre-Vegetation Tree Lines **Fence Lines** Roads, etc. Slopes Cut Fill Drainage **Time of Construction** Landscaping Soil Modification

PRESTRESS AT BETA

Slabs of Irregular Shapes

Shape Factor ~ 24

Overlapping Rectangles

Beam Continuity

Slabs of Irregular Shapes

SHAPE FACTOR (SF) = <u>Perimeter</u>² Area

(defined as perimeter²/area)

- If the SF is greater than 24 then the designer should consider:
- Modifications to the foundation footprint
- Use strengthened foundation system
- Soil treatment to reduce shrink / swell potential
- Use additional non-prestressed reinforcement
- Provide additional beams

BRAB & 1st & 2nd Ed of PTI

Slabs of irregular shapes should be divided into overlapping rectangles and a separate design made for each rectangle.

Primary attention is given to the rectangle that most reasonably represents the majority of the actual foundation.

Long, narrow rectangles are NOT representative.

Rectangle that is most representative

Watch shape factor, especially over 30

Add rebar if weird shape

Avoid discontinuous beam

Okay to slope beams

Live Loads
 Uniform 40 + ADD'L
 Dead Loads
 Actual
 Line Loads & Concentrated

Residential vs. Warehouse

Edge Load P (4.5.4.3)(6.1.4)

•Dead + Live load from superstructure only (no concrete)

 If P varies and ratio of largest to smallest ≤ 1.25 use largest for design

 If P varies and ratio of largest to smallest > 1.25 use largest for center lift and smallest for edge lift

Spacing

- 🔶 Max 15' -0
- Typically 10' -12'
- Align with heavy loads
 - Normally independent of wall layout

Depth (MOST IMPORTANT)

- Typ 24"-30"
- May vary, must be 7" below slab
- Deep Exterior for frost or moisture barrier

Width

- ✤ 8"-14"
- Most common 10"-12"
- ✤ Bearing Area B +6t or 16t

<u>USE SOME COMMON SENSE</u> (Good engineering judgment)

Beams are not required to be parallel or perpendicular or evenly spaced (Max. 15' +/-)

VARIABLE RIB DEPTHS

In analysis, ratio of deepest to shallowest rib depth cannot exceed 1.2 (not new in combined standard but misunderstood).

The difference in the constructed ribs are not limited to the 1.2 ratio

Bending Moments PTI

Max Moment @ Beta
Allowables
Shear @ Beta
Allowables
Deflection

Allowables
ord edition change from deflection to stiffness

ALLOWABLES FOR DESIGN ONLY AND NOT FOR ANALYSIS

Moment vs Slab Length

Allowable Concrete Stresses

Tension $6\sqrt{f'_c}$ Compression 0.45f'_c $v_{c} = 1.7\sqrt{f'_{c}} + 0.2f_{p}$ Shear should NOT control

15 KSI (Long Term Loss)
Strand ULT = 41.3K
Stress 80% MAX = 33K
Final After Losses = 27K

10 % Elongation Variance

Designed as uncracked section Minor cracking not uncommon and expected

Design Based on Uncracked Section

- Similar to working-stress design of elevated prestressed concrete members
- Effects of cracking studied in detail in original research (Ch. 5) and subsequent publications available through PTI (Technical Note #6).
- Effects of cracking generally inconsequential due to
 - Location of shrinkage cracks.
 - Increased soil support after flexural cracking.

Uniform Slab Conversion

Design as ribbed foundation. Convert to uniform thickness with same I.
 Not common in this area or highly expansive soils.

- Has perimeter beam and typically 8"-10" thick.
- **Used in California and Arizona**

POST-TENSIONING INSTITUTE *

A.2.2 Edge Lift Design

- A. Moment in the Long Direction $M_L = \frac{(S)^{0.10} (he_m)^{0.78} (y_m)^{0.66}}{7.2 (L)^{0.0065} (P)^{0.04}}$
- B. Moment in the Short Direction

For $L_L / L_S \ge 1.1$: $M_S = h^{0.35} \left[\frac{19 + e_m}{57.75} \right] M_L$

For
$$L_L/L_S < 1.1$$
:

 $M_S = M_L$

C. Shear in Both Directions

$$V_L \text{ or } V_S = \frac{(L)^{0.07} (h)^{0.4} (P)^{0.03} (e_m)^{0.16} (y_m)^{0.67}}{3.0 (S)^{0.015}}$$

D. Differential Deflection

$$\Delta_{0} = \frac{(L)^{0.35}(S)^{0.88}(e_{m})^{0.74}(y_{m})^{0.76}}{15.9(h)^{0.85}(P)^{0.01}}$$

$$\Delta_{p} = \frac{P_{e}e\beta}{2E_{c}}$$

$$\Delta = \Delta_0 + \Delta_0$$

	DTI SOC COMPTEE V	EBRION Build 082700
PTISIab 3.0 SOG		ERSION - Build 082706
PTI SOG COMMITTEE VERSION IS ONLY ALLOWED TO BE USED FOR AND ALTERNATE DESIGN METHODS. COMMERCIAL USE I Geostructural Tool Kit. Inc.	NOT PERMITTED.	
ed To : Don Illingworth	Seria	l Number : 199-399-009
Project Title : Sample		
Project Engineer : Pr	oject Number :	0011
Provide Report :	oject Date : April 9	, 2014
Geotechnical Report . Re	eport Number :	
RIBBED FOUNDATION - RESULTS OF	ANALYSIS	y.
Soil Bearing Analysis	820 614 LP	
Potal Applied Load Bearing Area	4.305 FT ²	
Applied Pressure on Soil	193 PSF	
Soil Pressure Safety Factor	6.49	
Prestress Summary		
Subgrade Friction calculated by method prescribed in PTI	Manual	Long
	Direction	Direction
Number of Slab Tendons	26	24
Number of Beam Tendons	14	18
Spacing of Slab Tendons (Feet)	2.90	2.82
Center of Gravity of Concrete (from top of slab) (Inch)	8.58	13.89
Eccentricity of Prestressing (Inch)	-3.13	-4.35
Minimum Effective Prestress Force (K)	832.9	886.1
Beta Distance Effective Prestress Force (K)	968.8	1,030.2
Minimum Effective Prestress (PSI)	136	145
Beta Distance Ellective Flestiess (FSI)	109	105
Moment Analysis - Center Lift Mode	1	1.16 FT-K/FT
Maximum Moment, Long Direction	1	0.62 FT-K/FT
Tension in Top Fiber (KSI)	Compression in	Bottom Fiber (K
Short Long	Short	Long
Direction Direction	Direction	Direction
Allowable Stress -0.329 -0.329 Allowable	e Stress 1.350 ress 0.683	0.631
Stiffnang Analysis Conter Lift Mode		
Based on a Stiffness Coefficient of 480	Short	Long
	Direction	Direction
Available Moment of Inertia (Inch4)	574,321	611,101
Required Moment of Inertia (Inch ⁴) 225,858	(338,786) 215,1 Width	02 (322,654)
Required Moment of menta controlled by	SVIGUT	Longui
Shear Analysis - Center Lift Mode		1.88 K/FT
Maximum Shear, Long Direction		1.78 K/FT
	Short	Long
	Direction	Direction
Allowable Shear Stress (PSI)	164 (120)	166 (122)
Actual Shear Stress (PSI)	52	39
Page 1 of 2		

C:\Program Files\PTISIab3SOG\2720 Windercrest.pti

PTI SOG COMMIT AND A	PTISIab 3.0 TTEE VERSION IS ONLY ALLOWED TO ALTERNATE DESIGN METHODS. COM Geostructural Tool	SOG BE USED FOR EVALUATION MERCIAL USE NOT PERMITTI Kit. Inc.	OF CURRENT	96
Registered To : Don Illingworth			Serial Number : 199-399-0	09
Project Title : Samı Project Engineer : Geotechnical Report RIBBED		Project Number Project Date : Report Date : Report Number OF ANALYSIS con t	er : April 9, 2014 er : tinued	
Cracked Section Ar	aslysis - Center Lift Mode			
Cracked Section Ar	ction Capacity (FT-K) (FT-K)	5 <u>Dir</u> 1,	Short Long rection Direction 694.9 1,581.1 768.1 659.0	
<u>Moment Analysis -</u> Maximum M Maximum M	Edge Lift Mode oment, Short Direction oment, Long Direction		18.08 FT-K/F7 12.79 FT-K/F7	(122)
Allowable St Actual Stress	Tension in Bottom Fiber (K3 Short Long Direction Direction ress -0.329 -0.329 s -0.458 -0.113	SI) Comp Di Allowable Stress Actual Stress	ression in Top Fiber (I Short Long rection Direction 1.350 1.350 0.345 0.25	<si)< td=""></si)<>
<u>Stiffness Analysis</u> Based on a Available Mo Required Mo Required Mo	<u>- Edge Lift Mode</u> Stiffness Coefficient of 960 oment of Inertia (Inch ⁴) oment of Inertia (Inch ⁴) oment of Inertia controlled by	Short <u>Direction</u> 574,321 732,033 (1,098,050) Width	Long Direction 611,101 518,074 (777,111) Length	1
<u>Shear Analysis - Ec</u> Maximum Sl Maximum Sl	Ige Lift Mode hear, Short Direction hear, Long Direction		5.09 K/FT 5.15 K/FT Short Long	
Allowable Sh Actual Shea	near Stress (PSI) r Stress (PSI)	164	(120) 166 (122) 141 112	
Cracked Section A	<u>nalysis - Edge Lift Mode</u>	Di	Short Long rection Direction	1
Cracked Sec 0.9 Moment	ction Capacity(FT-K) (FT-K)	1,	921.5 1,183.5 244.7 793.6	i.

C:\Program Files\PTISlab3SOG\2720 Windercrest.pti

1:04:23 PM

Depends on foundation type and surface material
 Extremely important for large slabs and some usages

Crack Control

Very important for exposed concrete surfaces

WEIGHT OF THE SLAB "SLIDING" OVER SUBGRADE

EDGES MOVE TOWARD THE CENTER

MIDDLE IS POINT OF FIXITY

REQUIRED AVERAGE COMPRESSION (P/A) GENERALLY 50 – 150 psi **AVERAGE TENDON FORCE GENERALLY** 27 kips **SLAB THICKNESS** 4" - 7" **COEFFICIENT OF FRICTION** Slabs cast on polyethylene sheeting - 0.75 Slabs cast directly on a sand layer - 1.0 Slabs cast on a granular sub-base - 1.75 Slabs cast directly on plastic soil - 2.0

Slabs cast directly on asphalt - 3.25

MINIMIZE SUBGRADE DRAG

INADEQUAATE AVERAGE COMPRESSION (TOO LITTLE P/A) WILL ALLOW CRACKS TO FORM

ADEQUATE
 AVERAGE
 AVERAGE
 COMPRESSION
 (P/A) WILL RESIST
 CRACKING AND
 CLOSE SHRINKAGE
 AND TEMPERATURE
 CRACKS.

PRESTRESS FORCE

The prestress force in the concrete (Pr) at mid-slab should be used to determine the minimum effective prestress stress (50 PSI) or force (0.05A)

The prestress force in the concrete (Pr) at Beta should be used to determine the bending and shear stresses.

$$\mathsf{P}_{\mathsf{r}}=\mathsf{P}_{\mathsf{e}}-\mu\mathsf{W}_{\mathsf{slab}}$$

Where: P_e is the prestress force in the tendon after losses μ is the subgrade friction coefficient W_{slab} is the weight of slab from perimeter to β or midslab

CRACKS (NOT ENOUGH P/A)

CONSTRUCTION AND MAINTENANCE MANUAL FOR POST-TENSIONED SLAB-ON-GROUND FOUNDATIONS

THIRD EDITION

CONSTRUCTION AND MAINTENANCE MANUAL FOR POST-TENSIONED SLAB-ON-GROUND FOUNDATIONS

8.3.1.a- Ribbed Foundations
Rib Depth h: -1 in.; + 0.2h
Rib Width: -1 in.; + 2 in.
Slab Thickness:
Individual Location: -1/2 in. + 2 in.
Average Thickness: -1/4 in. + 1 in.

LESSONS LEARNED

Roof Gutters and Downspout Placement

Over Excavation and Backfill with Select fill "BATH TUB"

Over Excavation and Backfill with Select fill "BATH TUB"

pti POST-TENSIONING INSTITUTE * Building Off of Moisture Conditioned Pad

When to use piers

POST-TENSIONING Problems and Moisture Problems with Foundation on Void Boxes

POST-TENSIONING

Previous Tree Rows and Uneven Soil Moisture Conditions

Incompatible Foundation Systems

PIERS w/ SLAB-ON-GRADE

PIERS w/ SLAB-ON-GRADE

Incompatible Foundation Systems

Metal Building Type:Slab-On-GradeP.I. = 20 – 304" S.O.G. Turned DownP.V.R. < 1"</td>Exterior Grade Beam

04.21.2011

Effect of Post-Tensioning

Effect of Post-Tensioning cont.

Tendon length

Corner Cracks

FOUNDATION MAINTENANCE

FOUNDATION MAINTENANCE

Proper foundation maintenance will minimize differential soil movement. Because of heavy rains at certain times of the year, it is impossible to keep moisture away from the foundation. However, good drainage will control excessive moisture, and this is very important. Excessive drying of the soil can be prevented by controlled watering around the foundation during dry seasons. Trees and other large vegetation accelerate the drying process, and careful consideration should be given when planting. Proper landscaping and ground cover will help prevent drying. Some recommended steps for foundation maintenance and care are listed below:

- Maintain positive drainage away from the foundation with a suggested slope of four inches in the first six feet away from the foundation.
- Fill any depressions adjacent to or near the foundation with native soil. Do not use sand or other granular materials.
- Check gutters and downspouts to be sure that water is discharged away from the foundation area.
- Water liberally around the foundation during dry spells. This should be done in a
 uniform manner around the entire house to prevent uneven soil movement. This
 will include the areas of the yard where there is not grass or plants. Automatic lawn
 sprinkling or automatic foundation soaker hose systems may be installed and are
 very beneficial.
- Plant trees a distance away from the foundation equal to their anticipated height. If
 existing trees are near the foundation, they will draw added water from the foundation
 thus requiring more water within this area. Sometimes tree roots that go under the
 foundation will need to be cut and a barrier trench installed to prevent new roots from
 growing under the foundation.
- Cracks in the soil from drying should not be allowed to form. If they do, gradual
 watering should be applied adjacent to the cracks so that they will close. Water
 should not be placed directly into the open cracks.

The object of a proper maintenance program is to attain as constant a moisture content as is possible for the soil under the foundation and the perimeter of the house. Special emphasis must be made in watering programs during dry seasons and the effect that trees have in the removal of soil moisture during these dry seasons.

