Seismic Performance of PT High-Strength Concrete Beam-Column Connections in part of Special Moment Frames

Thomas Kang, PE (Calif.), PhD, FPTI, FACI

Seoul National University, Korea

Contents

- Experimental Program
- Concrete Mixture Proportion
- Details of Specimens
- Reversed Cyclic Tests
- Test Results
- Conclusions

Experimental Program

Experimental Program - Joints of SMF

- Six Knee Joint Specimens / Four Exterior Joint Specimens
- Variables : 1. Concrete compressive strength (35 ~ 120 MPa)
 - 2. Steel fiber volumetric ratio = 1%
 - 3. Ratio of joint shear strength (0.58 ~ 1.54)
 - 4. Presence of post-tensioning

K-Joint		E-Joint		
K-RC-N	35 MPa <i>V_j</i> / <i>V_n</i> =0.62	E-SFRC-H	100 MPa SFRC <i>V_j</i> / <i>V_n</i> =1.28	
K-PT-N-1	35 MPa PT <i>V_j</i> / <i>V_n</i> =0.69	E-PT-H-1	80 MPa PT <i>V_j</i> / <i>V_n</i> =0.98	
K-PT-N-2	35 MPa PT <i>V_j</i> / <i>V_n</i> =0.98	E-PT-H-2	100 MPa PT <i>V_j</i> / <i>V_n</i> =1.29	
K-PT-N-3	35 MPa PT <i>V_j</i> / <i>V_n</i> =1.24	E-PT-H-3	120 MPa PT <i>V_j</i> / <i>V_n</i> =1.54	
K-RC-H	80 MPa RC <i>V_j</i> / <i>V_n</i> =0.58			
K-SFRC-H	80 MPa SFRC <i>V_j</i> / <i>V_n</i> =0.59			

Concrete Mixture Proportion

Concrete Trial Mixture (2014. 7. 29)

- Conducted trial mixture to find proper mixture proportion (HRWR = 10~12 kg/m³)
- Target strength: 120 MPa, 120+@ MPa
- 120 MPa: Decreased 10 kg water from the original mixture proportion
- 120+@ MPa : Decreased 20 kg water from original mixture proportion
- Zirconium was used for low heat of hydration / long-term strength

Concrete Trial Mixture Result

Strength	Date	Test piece	f _c ' (3 day)	<i>f_c'</i> (7 day)	<i>f_c</i> ' (28 day)
	2014.7.29	1	71.5	94.1	101.7
120 Mag		2	77.2	92.1	101.9
120 Mpa		3	77.9		108.6
		Average	75.5	93.1	104.1 MPa
120+@ Mpa	2014.7.29	1	82.3	96.8	110.7
		2	81.7	93.8	106.2
		3	79.6	92.1	105.0
		Average	81.2	94.2	107.3 MPa

College of Engineering, Seoul National University, Korea

Mixture Proportion for Cast-In-Place

- Mixture proportion was finalized based on trial mixture proportion & facility.
- Concrete curing without heat treatment
- Used vinyl curtain to keep heat and prevent evaporation
- 7 day curing on the site for sufficient strength development
- One batch: 1.5 m³ to prevent overload of silo

Target	W/B	//B S/a %) (%)	Unit weight (kg/m ³)					
Strength (MPa)	(%)		W	С	Slag powder	Zr	G	S
80	18.8	40	150	400	280	120	882	578
100	14.9	36	140	470	329	141	876	484
120	13.5	35	130	432	384	144	892	473

W/B = water to binder ratio; S/a = fine aggregate percentage; Zr = zirconium; G = coarse aggregate; S = fine aggregate

Cast-In-Place

College of Engineering, Seoul National University, Korea

Final Strength

- 35, 80, 80 (SFRC), 100 (SFRC) MPa concretes
- 100, 120 MPa concretes did not exceed the target strength.

	-					(MPa)	_
Design strength	Date	f _c ' (28 day)	f _c ' (90 day)	f _c ' (120 day)	f _t (120 day)	f _c ' / f _t (120 day)	
35	07.31	37.0	38.3	41.3	5.4	0.13	
80	09.20	87.3	85.0	103.4	9.2	0.09	
80 (SFRC)	09.23	67.3	94.7	100.3	10.6	0.11	
100	10.14	71.7	75.5	80.6	9.4	0.12	lower
100 (SFRC)	09.29	92.3	101.3	102.8	12.4	0.12	
120	10.02	69.7	97.0	96.0	7.6	0.08	lower

Concrete Stress-Strain Curves

• The ultimate strain ε_{cu} for 35 MPa, 80 MPa, 80 MPa (SFRC) ~ 0.003.

Very High-Strengh Concrete

- 35 MPa (without Zr): gray
- High-strength concrete (with Zr): gray (7~15 mm depth),

blue-green (inside)

After splitting tensile tests, it was found that aggregates were destructed.
(Typical feature of high-strength concrete)

Deformed Steel Bars

College of Engineering, Seoul National University, Korea

Deformed Steel Bars

Strand Stress-Strain Curves

- 15.2 mm diameter unbonded tendons (1860 MPa)
- Measured 1776 < 1860 MPa (270 ksi) was likely due to grease-induced wedge slip.

Steel for Heads of Headed Bars

Details of Specimens

K-Joint (High-strength Concrete)

- Head-restraining bars are placed just before the head. (2/3 of required amount)
- K-SFRC-H specimen w/ $V_f = 1\%$ had 150% of the spacing of hoops.

K-RC-H (Unit: mm)

K-Joint (High-strength Concrete)

K-SFRC-H (Unit: mm)

K-PT-Joints (Normal-strength Concrete)

- Four Grade 270, 0.6 in. diameter unbonded tendons were provided.
- Three joint shear to joint shear strength ratios ($V_i / V_n = 0.76, 1.01, 1.36$)

K-PT-N-1 (Unit: mm)

K-PT-Joints (Normal-strength Concrete)

K-PT-N-1 (Unit: mm)

E-PT-Joints (High-strength Concrete)

- Six Grade 270, 0.6 in. diameter unbonded tendons were provided.
- Three joint shear to joint shear strength ratios ($V_i / V_n = 1.22, 1.3, 1.52$)

E-PT-H-1 (Unit: mm)

E-PT-Joints (High-strength Concrete)

E-PT-Joints (High-strength Concrete)

Specimens	V_{j}	V _n	V_j / V_n
E-PT-H-1	2443	2004	0.98
E-PT-H-2	2914	2241	1.29
E-PT-H-3	3737	2455	1.54

 V_j : joint shear force demand at M_{pr} (assuming internal level arm ~ 0.9*d*); V_n : joint shear strength

College of Engineering, Seoul National University, Korea

College of Engineering, Seoul National University, Korea

Spacing of Transverse Reinforcement (SFRC)

K-RC-H

K-SFRC-H

E-SFRC-H

College of Engineering, Seoul National University, Korea

Reversed Cyclic Tests

Test Set-up (K-Joints)

Test Set-up (K-Joints)

College of Engineering, Seoul National University, Korea

Test Set-up (E-Joints)

Loading Histories (K-Joints)

Loading Histories (E-Joints)

K-PT-N-1 Test Video Clip

K-PT-N-3 Test Video Clip

E-PT-H-1 Test Video Clip

E-PT-H-2 Test Video Clip

E-PT-H-3 Test Video Clip

Test Results

Test Results (Moments of RC K-Joints)

- For knee joints' tests, axial forces should be considered because the actuator applies lateral loading by pushing or pulling the beam longitudinally.
- Measured peak moments exceeded the calculated nominal moments (M_n) .

Specimen	<i>M_n</i> (kN-m)	<i>M_{peak}</i> (kN-m)	M _{peak} / M _n
K-RC-N (closing)	387	425	1.10
K-RC-N (opening)	318	328	1.03
K-RC-H (closing)	460	623	1.35
K-RC-H (opening)	381	486	1.27
K-SFRC-H (closing)	463	667	1.44
K-SFRC-H (opening)	381	487	1.28

 M_n : Calculated nominal moment (based on actual material properties, measured axial force); M_{peak} : Peak moment (measured)

Test Results (Moments of PT K-Joints)

- For knee joints' tests, axial forces should be considered because the actuator applies lateral loading by pushing or pulling the beam longitudinally.
- Measured peak moments exceeded the calculated nominal moments (M_n) .

Specimen	<i>M_n</i> (kN-m)	<i>M_{peak}</i> (kN-m)	M _{peak} / M _n
K-PT-N-1 (closing)	352	469	1.33
K-PT-N-1 (opening)	275	338	1.23
K-PT-N-2 (closing)	504	613	1.22
K-PT-N-2 (opening)	405	532	1.31
K-PT-N-3 (closing)	652	715	1.10
K-PT-N-3 (opening)	541	612	1.13

 M_n : Calculated nominal moment (based on actual material properties, measured axial force, ACI 318-11 Equation for f_{ps});

*M*_{peak}: Peak moment (measured)

Test Results (Moments of E-Joints)

- No axial forces (lateral loading was applied perpendicular to the beam axis)
- Measured peak moments exceeded the calculated nominal moments (M_n) .

Specimen	<i>M_n</i> (kN-m)	<i>M_{peak}</i> (kN-m)	M _{peak} / M _n
E-SFRC-H (P)	1141	1431	1.25
E-SFRC-H (N)	1141	1478	1.30
E-PT-H-1 (P)	1360	1686	1.24
E-PT-H-1 (N)	1360	1775	1.31
E-PT-H-2 (P)	1485	1800	1.21
E-PT-H-2 (N)	1485	1855	1.25
E-PT-H-3 (P)	1846	2069	1.12
E-PT-H-3 (N)	1846	2197	1.19

 M_n : Calculated nominal moment (based on actual material properties, ACI 318-11 Eq. for f_{ps}); M_{peak} : Peak moment (measured)

Test Results (Beam Moment-Curvature)

K-PT-N-2

College of Engineering, Seoul National University, Korea

K-PT-N-3

Conclusions

Conclusions

PT Beam-Column Joints of Special Moment Frames

- All PT specimens showed excellent seismic performance for every performance indicators (essentially did not completely fail until the end of testing, except for E-PT-H3 which failed at a drift ratio of 4%).
- Very high-strength concrete and SD 600 (Grade 90) steel bars can be promoted for tall buildings (joints, coupling beams, boundary elements of core walls, transfer slabs/girders) and mega infrastructures.
- Joint shear strengths of PT beam-column joints were turned out to be much larger than those for conventional RC beam-column joints.
- Applications of post-tensioning, high-strength materials, steel fibers (1% volume fraction ratio) are promising.
- Test program & data are of great value for PT / seismic / materials societies.

Thank you

Further development of the data will be made and shared with the PT industry.

tkang@snu.ac.kr