Foundation Repairs

When Do You Elevate An Existing Slab On Grade?

Contour Elevation Plan

Contour Elevation Plan

Full Lift Underpin

Engineered Repair Plan

History of Full Lift Underpinning

Started in North Texas 1998-1999 (popular in Houston before)

From 1998-Present over 2,500 in North Texas over 10,000 in all of Texas

Analysis Of Suspended Slab

Typical Loading

Design Method

1/2 (D.L. & L.L.)

M- = 0.46 kip·ft M+ = 0.23 kip·ft

Two Way Action

Full support on each side

 $M^{-} = -0.37 \text{ kip-ft}$ $M^{+} = 0.19 \text{ kip-ft}$

Supported on all four sides

0.90

 W_B

0.40

0.40

0.77

0.40

0.12

0.21

318-136 ACI STANDARD — BUILDING CODE METHOD 3—TABLE 4—RATIO OF LOAD w IN A and SHEAR N SLAB AND LOAD ON SUPP Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 Ratio W_A 0.50 0.50 0.17 0.50 0.83 0.71 1.00 0.50 0.50 0.83 0.50 0.17 0.29 W_A 0.55 0.55 0.20 0.55 0.86 0.75 0.95 0.45 0.45 0.80 0.45 0.14 0.25 W_A 0.60 0.60 0.23 0.60 0.88 0.79

DESIGN

Design Method

T Slab Analysis				Page 1 of 1			
Project:		xxx					
Date:	4/15/09						
SLAB / BEAM/ RECTANGL	E INPUT	2 WAY SLAB MOMENT C	OEFFICIENTS				
f'c (psi) =	3000.00	ACI 318-83 method 3, tables 1-3 , based on "m" =	0.89				
Long Direction Laura -	47.50	CAring =	0.056				
Width Direction W _{SLAB} -	47.00	C _{threg} -	0.036				
Average tstas (n) =	4	CApos_DL =	0.022				
B = Average Wstem (In) =	12	Ctipos_DL =	0.014				
Average D _{STEM} (In) =	20	C _{Apos_LL} -	0.034				
# L BEAMS TOTAL =	6	Capes_LL =	0.022				
# W BEAMS TOTAL =	6	TENDON INP	UT				
Max Beam Span c/c (ft) -	9.17	Tendon Diameter (In) =	0.5				
Transverse Span1 c/c (ft) =	8.17	* Favo (kips) =	29.00		LONG TENDON SPACING (F	7.67	
Transverse Span2 c/c (ft) -	8.17	# Last Tridns TOTAL =	6				
ADDITIONAL INPU	T	Beam Tendons EACH =	1				
DL ADDED (DSf) =	5	* Avg.Top Tndn Clear (In) =	2.00				
LL (psf) -	40	Btm Tendon Clear (In) =	3.00				
Friction Coeff -	0.75	* Typical Valu					
The first country		SECTION PROPERTIES			Calculate Slab Working Shear Stress		
	SLAB	BEAM	Tota	ils	L max (ft)		ongest Clear Span
A (In ²)	392.00	240.00			TL (psf)		otal Uniform Load
y (In)	2.00	14.00		002.00	tause (In)	- 4.00 - A	werage Slab Thickness
Ay (In ³)	784.00	3,360.00		4144.00	Actual v o (psl)	- 18,18 - (L max *TL) / (12 in *tsuas)
Ay² (in¹)	1,568.00	47.040.00		48608.00	Allowable V o (psl)		.7"sqt(f'c) + 0.2"F/A CENTE
I adm ⁴ s	130.67	8.000.00		8130.67	Compare	Slab Stresses (p	
Av2 + Lo(In4)	1,698.67		Σ Ay2+I o (In4) >	56738.67	ALLOWTENGLE		-328
CGC = Yrac =	6.557	00,040,20	1 ₀₀ 5 =	29566.616	101000	ess = .45°T'C =	13
CGS = Ys (n) =	11.307		S ₁₀₁ 3) =	4509	ALLOWER		n. (+) = compression)
e (m) =	-4.750		Sb (m ²) =	1695	ACTUALTENSION FIA CENTER + MSU		-27
Ye do =	17.443		F/A EDGE (psi) =	93.72	THE TOTAL PROCESSION OF THE CENTER TO WAS	on (max) / Grandon	-21
Eq. t set (In) =	8.757		F/A DRAG (set) =	-18.55			Slab Is OK
Friction Coeff -	0.75		F/A CENTER (se)	75.17	Calculate Flexural Capacity	(AMn)	© = (per ACI 318-02 20.3
BEAM PROPERTIE		SI AR UNISOD	M LOADING (pst		Calculate Flexural Capacity	1 - 1	e = (per AUI 318-02 20.3
H (In)=	24.00	SLAB UNIFUR	Working	, Ultimate	(- 4)		
		DI			(Mn=Apsfps(dp-2) Amfor		
B map (ft)=	8.17 2.04	DL stas =	50 5	60 6	(→ d ₀		
B are (ft) -	2.04 4.08	DL ADDED =		64	A _{ps} ·f _{ps} b		
Span to depth ratio =			40		a := 0.85fc·b		nui.
Total Tendon City (B TRB) =	2.043	TL =		130	Φ Mn		
Total Tendon Qty (8 pr) =				ULTMATE SLAB MOMENTS (kip*ft) [1'strip]			
			Short Span	Long Span		Short Span	Long Span
Max Clear Span L _{SLAB} (ft) =	8.17	(-) Molab =		-0.228		-0.374	-0.312
Max Clear Span Ws.As (ft) -	7.17	(+) M _{BLAB} DL =		0.051	(+) M _{SLAB} DL		0.062
Short / Long Span Ratio (m) -	0.89	(+) M _{SLAB} LL =		0.059	(+) M _{SLAB} LL		0.094
Sx _{SLAB of} 1 ft strip (in ³) =	32.00	(+) Mslas TL =	0.132		(+) Msias TL	0.186	

Hilburn Project

Capacity Analysis of Existing Post-Tensioned Slab

Prepared on February 27, 2013

3D physical model of slab showing raised slab, beams and push piles.

ADAPT Corporation Redwood City, CA, USA ADAPT International Kolkata, India

ADAPT Latin America Mlami, FL, USA

ADAPT Europe Perugia, Italy

ADAPT

3D Finite Element Analytical Model used to accurately calculate demand on slab and inherent capacity.

All tendons in slab are faithfully modeled: slab and beam tendons.

TYPICAL EXTERIOR PILING

TYPICAL INTERIOR PILING

FLAT SLAB REPAIR

TYPICAL TUNNEL

ACI 437

➤ States the engineering analysis should be for strength and not design code compliance. ACI 437 states: "Engineering judgement is critical in the strength evaluation of reinforced concrete buildings. Judgement of qualified structural engineers may take precedence over compliance with code provisions or formulas for analyses that may not be applicable to the case studies."

UBC Code Compliance

1713.1

Whenever there is a reasonable doubt as the stability or load-bearing capacity of a completed building, structure or portion thereof for the expected loads, an engineering assessment shall be required. The engineering assessment shall involve either a structural analysis or an insitu load test, or both. The structural analysis shall be based on actual material properties and other as-built conditions that affect stability or load-bearing capacity, and shall be conducted in accordance with the applicable design standards....

Actual Load Test

Partial Floor Plan

Load Test Photos

Load Test Photos

Load Test Photos

Floor Load Test

FLOOR LOAD TEST AT 2124 GATE POINT WAY ARLINGTON, TEXAS RONE JOB NO. 00-3874

Date	West half load (inches of water)	East half load (inches of water)	Gauge 1 disp	Gauge 2 disp (inches)	Gauge 3 disp (inches)	Gauge 4 disp (inches)	Gauge 5 disp (inches)	Gauge 7 disp (inches)	Gauge 8 disp (inches)	Gauge 9 disp (inches)
07/19/2000	0	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
07/19/2000	5.5	0	0.001	-0.001	-0.001	-0.002	-0.002	-0.001	0.000	-0.001
07/19/2000	11	0	0.002	-0.003	-0.001	-0.001	-0.001	-0.001	0.000	-0.001
07/19/2000	16.5	0	0.003	-0.005	-0.002	0.000	-0.001	-0.001	0.000	-0.001
07/19/2000	22	0	0.003	-0.006	-0.002	0.001	-0.001	0.000	0.001	0.000
0111010000										
07/20/2000	22	0	-0.001	-0.048	-0.020	0.000	-0.027	-0.004	-0.001	-0.001
(24 hr. reading)				***************************************						
07/20/2000	22	5.5	0.001	-0.048	-0.020	0.001	-0.028	-0.005	-0.001	-0.002
07/20/2000	22	11	0.000	-0.050	-0.021	0.001	-0.028	-0.006	-0.002	-0.004
07/20/2000	22	16.5	0.000	-0.049	-0.021	0.002	-0.028	-0.006	-0.002	-0.006
07/20/2000	22	22	0.001	-0.050	-0.021	0.003	-0.027	-0.007	-0.004	-0.007
07/21/2000	22	22	0.002	-0.052	-0.030	0.004	-0.038	-0.010	-0.008	-0.012
(24 hr. reading)										
07/21/2000	26	26	0.003	-0.054	-0.040	0.005	-0.040	-0.010	-0.008	-0.012
	30	30	0.003	-0.056	-0.042	0.006	-0.041	-0.012	-0.010	-0.012

Upward disp

(+)

Downward disp (-)

wiiwaru uisp (-)

Gauge 6 was not functioning

properly

LESSONS LEARNED

Roof Gutters and Downspout Placement

www.shutterstock.com - 32072194

Over Excavation and Backfill with Select fill "BATH TUB"

Over Excavation and Backfill with Select fill "BATH TUB"

Building Off of Moisture Conditioned Pad

Plumbing Problems and Moisture Problems with Foundation on Void Boxes

Previous Tree Rows and Uneven Soil Moisture Conditions

Incompatible Foundation Systems

PIERS w/ SLAB-ON-GRADE

PIERS w/ SLAB-ON-GRADE

Incompatible Foundation Systems

CLASSROOM BUILDING

Heads Up "THINK"

- Metal Building Type: Slab-On-Grade
- P.I. = 20 30 4" S.O.G. Turned Dowr
- P.V.R. < 1" Exterior Grade Beam</p>

04.21.2011

Effect of Post-Tensioning

EFFECTS OF PT SHORTINING

Effect of Post-Tensioning cont.

EFFECTS OF PT SHORTINING

Corner Cracks

Corner Cracks

FOUNDATION MAINTENANCE

Proper foundation maintenance will minimize differential soil movement. Because of heavy rains at certain times of the year, it is impossible to keep moisture away from the foundation. However, good drainage will control excessive moisture, and this is very important. Excessive drying of the soil can be prevented by controlled watering around the foundation during dry seasons. Trees and other large vegetation accelerate the drying process, and careful consideration should be given when planting. Proper landscaping and ground cover will help prevent drying. Some recommended steps for foundation maintenance and care are listed below:

- Maintain positive drainage away from the foundation with a suggested slope of four inches in the first six feet away from the foundation.
- Fill any depressions adjacent to or near the foundation with native soil. Do not use sand or other granular materials.
- Check gutters and downspouts to be sure that water is discharged away from the foundation area.
- Water liberally around the foundation during dry spells. This should be done in a
 uniform manner around the entire house to prevent uneven soil movement. This
 will include the areas of the yard where there is not grass or plants. Automatic lawn
 sprinkling or automatic foundation soaker hose systems may be installed and are
 very beneficial.
- Plant trees a distance away from the foundation equal to their anticipated height. If
 existing trees are near the foundation, they will draw added water from the foundation
 thus requiring more water within this area. Sometimes tree roots that go under the
 foundation will need to be cut and a barrier trench installed to prevent new roots from
 growing under the foundation.
- Cracks in the soil from drying should not be allowed to form. If they do, gradual
 watering should be applied adjacent to the cracks so that they will close. Water
 should not be placed directly into the open cracks.

The object of a proper maintenance program is to attain as constant a moisture content as is possible for the soil under the foundation and the perimeter of the house. Special emphasis must be made in watering programs during dry seasons and the effect that trees have in the removal of soil moisture during these dry seasons.

