2016 PTI Convention
Long Beach, California

Technical Session 7
Strengthening and Repair
Considerations in Designing Post-Tensioning Repairs

Tracy Naso, P.E., S.E.
Senior Associate
Wiss, Janney, Elstner Associates, Inc.
Presentation Goals

• Recognize factors that influence repair design
• Maintain load path for post-tensioning force during repairs
• Identify and avoid common issues during design and construction
• Understand de-tensioning and stressing operations
Outline

• Define the problem
 – Damage, deterioration, design

• Design the repair

• Construction
 – De-tensioning
 – Potential pitfalls
 – Stressing
WHAT WENT WRONG?
PLANNING AND DESIGN
(UNBONDED MONOSTRAND SYSTEMS)
Structure Information

• Type of structural system
 – One-way slab over beams
 – Two-way slab
 • Distributed
 • Distributed/banded
 – Other post-tensioned elements
 • Beams
 • Balconies
 – Openings/discontinuities

• Repair History
Add tendon anchors!

Construction joints?
Intermediate stressing anchors?
Field verify.
PT Information

• Type of post-tensioning system
 – Bars, buttonhead wires, monostrand
 – Bonded vs. unbonded

• Sheathing
 – Paper wrapped
 – Heat-sealed
 – Push-through
 – Extruded
Force Continuity

24 tendons = ~650 kips
Load-Carrying Capacity

• Evaluation
 – Service loads vs. code-prescribed factored design loads

• During construction
 – Restricted live load
 – Phased repairs
Durability

• Interior conditions
 – Adequate protection at end anchors

• Aggressive environment
 – Encapsulated systems
 – Sheathing repair
 – Surface-level protection

• Protection during construction
IMPLEMENTING REPAIRS
De-tensioning

• Grinder or sawcut
• Flame cut
 – Along length
 – End anchor
• Controlled release
 – Along length
 – End anchor
• Confirm that tension is released for full length of tendon.
Collateral Damage
Displaced wedge and projecting king wire

Retracted strand, missing wedges
Temporary Lock-Off Anchor

- Prevent de-tensioning of full length of tendon
- Sensitive to flatness of bearing surface
- Required sufficient clearance between tendons
- Not designed for permanent installation
Shoring During Construction

• Location of concrete openings
• Loss of tension for tendons through columns
4 de-tensioned tendons

Punching shear crack continues around column
Work near end anchors

- Slab edge
- Future repair opening for tendon parallel to slab edge
- Embedded tendon and anchor
Whoops.
Where is the force going to go?
Phased concrete placement

- New concrete receives post-tensioning force
- Restore force load path
- Accommodate hardware travel during stressing
Impact of Previous Repairs
Impact of Previous Repairs
Impact of Previous Repairs
Stressing

• Target force and elongation
 – 0.6*Pu or 0.65*Pu
 – Reduced creep, shrinkage, and shortening

• Multiple stressing points
 – Center stressing
 – End stressing
• “Short” elongation
 – Interferences
 – Construction joints
 – Binding from corrosion
 – Old PT repairs
Summary

• Address the problem
• Potential shoring requirements
• Maintaining load path for post-tensioning force
• De-tensioning challenges
• Construction pitfalls
• Stressing
Questions?

Tracy R. Naso
tnaso@wje.com

Wiss, Janney, Elstner Associates, Inc.
330 Pfingsten Road
Northbrook, Illinois 60062
847-272-7400
Considerations in Designing Post-Tensioning Repairs

Tracy Naso, P.E., S.E.
Wiss, Janney, Elstner Associates, Inc.
tnaso@wje.com