38800 Country Club Drive, Farmington Hills, MI 48331

Telephone: (248) 848-3180

Fax: (248) 848-3181

www.post-tensioning.org

ERRATA

PTI DC45.1-18

Recommendations for Stay Cable Design, Testing, and Installation

Seventh Edition, First Printing 2018 DC-45 Stay Cable Bridge Committee

The following errata item was added on December 2, 2019:

Page 48, Eq. C5.2.3-1:

C5.2.3.2 — Rain-wind-induced vibrations

The following tentative stability criterion for rainwind-induced vibrations of smooth circular cables has been proposed¹⁷

$$Sc = \frac{m\xi}{\rho D^2} \ge 10$$
 (C5.2.3-1)

(Scruton number, Sc is greater or equal to 10)

where

m is the cable mass per unit length ξ is the ratio of structural damping to critical damping ρ is the air density D is the cable diameter

The expression $(m\xi/\rho D^2)$ is called the mass-damping parameter or Scruton number Sc. Note that modification to cable shape may allow this criterion to be relaxed if proven by wind tunnel tests. A value of 5 has been proposed in lieu of the lower limit of 10 in Eq. (C5.2.3-1) for special helix or dimpled stay pipes with special testing to verify this value. Eq. (C5.2.3-1) implies that for typical cable mass densities and diameters, a damping ratio of ξ equal to 0.5% to 1.0% (depending on the actual values of m and D) would be sufficient to suppress rain-wind-induced vibrations.