PTI Journal

Technical Paper

DESIGN OF EXPANSION JOINTS IN PARKING STRUCTURES

By

MOHAMMAD IQBAL

Authorized reprint from: July 2012 issue of the PTI Journal

Copyrighted © 2012, Post-Tensioning Institute All rights reserved.

DESIGN OF EXPANSION JOINTS IN PARKING STRUCTURES

by Mohammad Iqbal

Parking structures are subjected to volume change stresses, which may cause distress in framing elements. Expansion joints are generally introduced in the structures to alleviate the impact of volume change effects. This paper addresses the threshold question of whether an expansion joint is needed in a parking facility and provides performance-based guidelines to assess the need for an expansion joint.

KEYWORDS

Creep; design; expansion joint; parking structures; prestress; restraint; shrinkage; temperature; volume change.

INTRODUCTION

Most parking structures are built using concrete. The structures are open and unheated. As such, they are subjected to creep, shrinkage, and temperature (C-S-T) effects. Further, in the case of post-tensioned structures, floor shortening caused by precompression adds to the C-S-T effects in causing structural movement in parking structures. The four factors are jointly known as volume change (VC) effects.¹ The restraint to volume changes induces stresses that can cause cracks, leaks, and premature deterioration in concrete structures. To design for the VC effects, ACI 318 requires that design be based on a "realistic assessment" of such effects occurring in service²; however, concrete is a complex nonlinear material. Unlike steel that undergoes neither creep nor shrinkage and has a well-defined coefficient of thermal expansion, concrete offers challenges in realistically assessing its VC effects. The VC deformations accumulate over the building length, as shown in Fig. 1. To limit the stress buildup, expansion joints are introduced by providing an opening or a gap between adjacent structural segments starting from the ground level up to the roof, as shown in Fig. 2. The term "expansion joint" is a misnomer because the joints are introduced primarily to allow shortening, and not expansion, of the structure. The expansion joints are

Fig. 1—Deformed shape of a moment subjected to VC effects.

Fig. 2—Double-column expansion joint in post-tensioned parking structure.

expensive to install and maintain and, if not maintained, they present a potential hazard to pedestrians who may trip over them and to motorists whose vehicles may bottom out. Therefore, it is desirable to minimize expansion joints in parking structures.

This paper presents the state-of-the-art review of prescriptive requirements to design expansion joints in parking structures, along with recent insight gained in

PTI JOURNAL, V. 8, No. 1, July 2012. Received and reviewed under Institute journal publication policies. Copyright ©2012, Post-Tensioning Institute. All rights reserved, including the making of copies unless permission is obtained from the Post-Tensioning Institute. Pertinent discussion will be published in the next issue of *PTI JOURNAL* if received within 3 months of the publication.

Fig. 3—Expansion joint spacing guidelines per References 4 through 6 (Note: 1 ft = 0.31 m and 1°F of design temperature [temperature change] = 0.55°C.)

Fig. 4—LFRS layout to maximize expansion joint spacing (adapted from Reference 5).

understanding the performance of parking structures under VC effects. Next, major factors influencing the need for expansion joints are discussed. Design guidelines are presented at the end.^{*}

HISTORICAL BACKGROUND

A threshold issue in expansion joint design is to determine the locations or spacing intervals at which the joints should be installed. This issue was addressed 35-plus years ago by the Federal Construction Council (FCC), which developed the first guidelines based on measurements recorded in 1943 in nine buildings.⁴ For rectangular buildings, the FCC required the expansion joint spacing criteria to consider two factors: design temperature and column base fixity, as shown in Fig. 3. Recognizing the difference in behavior of precast and post-tensioned concrete structural systems, Chrest et al.⁵ proposed that expansion joints in post-tensioned parking structures should be spaced at 200 ft (61 m) maximum; however, if the floor diaphragm had a pourstrip, the spacing could be increased to 275 ft (84 m).⁵ Subsequently, the Post-Tensioning Institute (PTI) published its expansion joint guidelines. The PTI guidelines⁶ are identical to the Chrest et al.⁵ guidelines, except that PTI increased the expansion joint spacing limits by 50 ft (15 m) in each case, with a caveat that the recommended limits were meant for locations where temperature changes were "not significant" and that they should be modified for locations with "significant" temperature changes. PTI did not define what constitutes a "significant" temperature change; however, it emphasized that the guidelines were based on ideal structural framing layout so that stiff elements such as shear walls are located at or near the center of rigidity of the structure where little movement was expected. Figure 4 illustrates an ideal layout where the center of mass and center of rigidity of the facility coincide. The Chrest et al.5 and PTI6 recommendations were complementary to each other because Chrest et al.⁵ based their recommendation on parking structures located in the Midwest where temperature differentials are significant and durability is a primary concern, whereas PTI aimed its recommendation for the southwestern part of the U.S. with mild or "nonsignificant" temperatures. Assuming a design temperature (temperature change) of 40°F (22°C) is the line between the significant and nonsignificant temperatures, the PTI⁶ and Chrest et al.⁵ recommendations are shown in Fig. 3. Separately, the Precast/Prestressed Concrete Institute (PCI) recommended considering connection deformability, frame stiffness, location of lateral force resisting system (LFRS), and weather exposure conditions in assessing the need for an expansion joint.7 However, PCI did not

^{*}The design guidelines to size the gap at an expansion join (Fig. 1) were published in Reference 3 and are not repeated in this paper.

provide any design criteria for the factors affecting the need for an expansion joint in a parking structure.

The purpose of providing an expansion joint is to reduce the VC stress build-up to a tolerable level, and not to eliminate the build-up altogether.² The ACI 318 commentary states that, where LFRS provides "significant restraint" to shrinkage and temperature movements, it may be necessary to increase the amount of slab reinforcement required to control cracking. ACI 318 does not define what "significant restraint" is. Therefore, the expansion joint spacing criterion remains an unsettled issue; however, establishing a rational expansion joint spacing criterion is important because omitting an expansion joint where it is needed creates a risk of structural distress, causing unnecessary repair costs. On the other hand, installing an expansion joint where it is not needed increases initial construction cost and adds to the maintenance costs of the facility. This paper presents guidelines to optimize the expansion joint spacing and thus enhance structural performance. The guidelines are based on this author's experience in design of parking structures and in resolving matters related to expansion joints.

DESIGN FACTORS

The need to install an expansion joint depends on several factors including design temperature, structural system type, stiffness, integrity, and framing layout. It is well known that the volume changes increase with the distance from the center of rigidity and reach their maximum at the perimeter (Fig. 1). Because shortening has more pronounced impact on cracking than its expansion counterpart, more emphasis is given to the shortening aspect; however, shortening in a constructed facility does take place in a free or unrestrained manner but is, to a varying degree, restrained by LFRS. An understanding of factors causing shortening on one hand, and restraints to shortening on the other, is essential to assess the need for the expansion joint spacing. The significant factors are discussed as follows.

Design temperature

It has been recognized that seasonal temperature changes from anticipated high temperature (T_{\max}) to low temperature (T_{\min}) in a locality are the principal cause of shortening. Generally, it takes at least a year to construct a parking structure and, therefore, various structural elements are installed at different temperatures. To simplify determination of design temperature for a structure, the

mean construction season temperature (T_c) is generally used.³ As construction is carried out generally in abovefreezing temperatures, the temperature T_c is invariably above 32°F (0°C). What temperature values should be used for T_{max} , T_{min} , and T_c for a location is an important design step. The FCC⁴ defined T_{max} as the temperature exceeded, on average, only 1% of the time during the summer months. Similarly, T_{min} is defined as the temperature that equals or exceeds, on average, 99% of the time during the winter months in the locality of the building. The list of temperature variations for cities across the U.S. is given in Table 1. Because thermal shortening is additive to creep and shrinkage effects and manifests in structural distress, the design temperature Δ_T is defined as

$$\Delta_T = T_c - T_{min} \tag{1}$$

As shown in Table 1, the design temperature Δ_T varies from 16°F (9°C) for Honolulu, HI, to 103°F (57°C) for Fairbanks, AK, with cities in the 48 contiguous states falling between the two.

Structural system

Three types of structural systems used in parking structures are post-tensioned, pretopped double-T, and field-topped double-T precast concrete systems. The structural system type selected has considerable impact on thermal movements. The post-tensioned structures exhibit more thermal movement than their precast counterpart.¹ To alleviate the stress build-up in the post-tensioned diaphragms and to minimize associated cracking, control strips are introduced during construction. The control strips, also called closure strips, delay strips, or pour-strips, help increase flexibility and thus permit initial creep and shrinkage to dissipate. Once the pour strip concrete attains its design strength, the pour strip loses its effectiveness and both sides of the diaphragm act as one unit during the service life of the structure.

Structural stiffness

It is well known that structures do not move freely under VC effects, as their movement is inhibited by structural stiffness. An increase in the LFRS stiffness increases restraint and axial tension in the diaphragm. As a result, slab and beams located near the LFRS's center of rigidity are subjected to the maximum axial stress while its exterior columns are subjected to the maximum bending moment and shear forces.¹ If the LFRS is too stiff to flex,

 T_{max}

 T_{min}

 T_{c}

-17

-1

-2

-5

-8

-12

Location

Colorado

Alamosa

Denver

Colorado Springs

Grand Junction

the VC stresses would cause significant extensive cracking in slab and other elements. In this respect, the published guidelines may be unconservative since they do not include LFRS stiffness in expansion joint need assessment.

Table	1—Temperature	variation	in	the	United
States	1				

ates				Pueblo	96
Location	$T_{_{max}}$	$T_{_{min}}$	T _c	Connecticut	
				Bridgeport	00
<u>Alabama</u>				Hartford	90
Birmingham	97	63	19	New Haven	90
Huntsville	97	61	13	inew Haven	00
Mobile	96	68	28	Delawara	
Montgomery	98	66	22	Wilmington	93
<u>Alaska</u>				Florida	
Anchorage	73	51	-25	Davtona Beach	94
Barrow	58	38	-45	Et Myers	94
Fairbanks	82	50	-53	Iacksonville	96
Juneau	75	48	-7	Key West	90
Nome	66	45	-32	Lakeland	95
				Miami	92
<u>Arizona</u>				Miami Beach	91
Flagstaff	84	58	0	Orlando	96
Phoenix	108	70	31	Pensacola	92
Prescott	96	64	15	Tallahassee	96
Tucson	105	67	29	Tampa	92
Winslow	97	67	9	West Palm Beach	92
Yuma	111	72	37		72
Arkansas				<u>Georgia</u>	
<u>AIKalisas</u> Et Smith	101	65	15	Athens	96
FL. SIIIILII	101	65	13	Atlanta	95
There where a	99	65	19	Augusta	98
Texarkana	99	05	22	Columbus	98
California				Macon	98
California Delegende al d	102	65	21	Rome	97
Bakersfield	103	05	31	Savannah/Travis	96
Burbank	97	64 52	36		
Eureka/Arcata	67	52	32	Hawaii	
Fresno	101	63	28	Hilo	85
Long Beach	87	63	41	Honolulu	87
Los Angeles	94	62	41		
Oakland	85	57	35	Idaho	
Sacramento	100	60	30	Boise	96
San Diego	86	62	42	Idaho Falls	91
San Francisco	83	56	35	Lewiston	98
Santa Maria	57	57	32	Pocatello	94

PTI *JOURNAL* | July 2012 23

TECHNICAL PAPERS _____

Location	T _{max}	$T_{_{min}}$	T_{c}	Location	T _{max}	$T_{_{min}}$	T _c
<u>Illinois</u>				<u>Massachussetts, cont.</u>			
Chicago	95	60	-3	Pittsfield	86	58	-5
Moline	94	63	-7	Worcester	89	58	-3
Peoria	94	61	-2				
Rockford	92	62	-7	<u>Michigan</u>			
Springfield	95	62	-1	Alpena	87	57	-5
				Detroit-Metropolitan	92	58	4
<u>Indiana</u>				Escanaba	82	55	-7
Evansville	96	65	6	Flint	89	60	-1
Fort Wayne	93	62	0	Grand Rapids	91	62	2
Indianapolis	93	63	0	Lansing	89	59	2
South Bend	92	61	-2	Marquette	88	55	-8
				Muskegon	87	59	4
<u>Iowa</u>				Sault Ste. Marie	83	55	-12
Burlington	95	64	-4				
Des Moines	95	64	-7	<u>Minnesota</u>			
Dubuque	62	63	-11	Duluth	85	55	-19
Sioux City	96	64	-10	International Falls	86	57	-29
Waterloo	91	63	-12	Minneapolis/St. Paul	92	62	-14
				Rochester	90	60	-17
<u>Kansas</u>				St. Cloud	90	60	-20
Dodge City	99	64	3				
Goodland	99	65	-2	<u>Mississippi</u>			
Topeka	99	69	3	Jackson	98	66	21
Wichita	102	68	5	Meridian	97	65	20
				Vicksburg	97	66	23
<u>Kentucky</u>							
Covington	93	63	3	<u>Missouri</u>			
Lexington	94	63	6	Columbia	97	65	2
Louisville	96	64	8	Kansas City	100	65	1
				St. Joseph	97	66	-1
<u>Louisiana</u>				St. Louis	98	65	4
Baton Rouge	96	68	25	Springfield	97	64	5
Lake Charles	95	68	29				
New Orleans	93	69	32	<u>Montana</u>			
Shreveport	99	66	22	Billings	94	60	-10
				Glasgow	96	60	-25
<u>Maine</u>				Great Falls	91	58	-20
Caribou	85	56	-18	Havre	91	58	-22
Portland	88	58	-5	Helena	90	58	-17
				Kalispell	88	56	-7
<u>Maryland</u>				Miles City	97	62	-19
Baltimore	94	63	12	Missoula	92	58	-7
Frederick	94	63	7				
				<u>Nebraska</u>			
Massachusetts				Grand Island	98	65	-6
Boston	91	58	6	Lincoln	100	64	-4

Location	$T_{_{max}}$	$T_{_{min}}$	T _c	Location	$T_{_{max}}$	$T_{_{min}}$	T _c
<u>Nebraska, cont.</u>				<u>North Dakota, cont.</u>			
Norfolk	97	64	-11	Williston	94	59	-21
North Platte	97	64	-6				
Omaha	97	64	-5	<u>Ohio</u>			
Scottsbluff	96	62	-8	Akron/Canton	89	60	1
				Cincinnati	94	62	8
Nevada				Cleveland	91	61	2
Elko	94	61	-13	Columbus	92	61	2
Ely	90	59	-6	Dayton	92	61	0
Las Vegas	108	66	23	Mansfield	91	61	1
Reno	95	62	2	Sandusky	92	60	4
Winnemucca	97	63	1	Toledo	92	61	1
				Youngstown	89	59	1
New Hampshire				0			
Concord	91	60	-11	Oklahoma			
				Oklahoma City	100	64	11
New Jersey				Tulsa	102	65	12
Atlantic City	91	61	14				
Newark	94	62	11	Oregon			
Trenton	92	61	12	Astoria	79	50	27
				Eugene	91	52	22
New Mexico				Medford	98	56	21
Albuquerque	96	64	14	Pendleton	97	58	3
Raton	92	64	-2	Portland	91	52	21
Roswell	101	70	16	Roseburg	93	54	25
		, -		Salem	92	52	21
New York					<i>,</i> –		
Albany	91	61	-5	Pennsylvania			
Binghampton	91	66	-2	Allentown	92	61	3
Buffalo	88	59	3	Erie	88	59	7
New York	94	59	11	Harrisburg	92	61	9
Rochester	91	53	2	Philadelphia	93	63	11
Svracuse	90	59	<u> </u>	Pittsburgh	90	63	5
oyiucuse	70	07	2	Reading	92	61	3
North Carolina				Scranton Wilkes-Barre	89	61	2
Asheville	91	60	13	Williamsport	91	61	1
Charlotte	96	60	18	winnanispore	/1	01	1
Greenshoro	94	64	14	Rhode Island			
Raleigh/Durham	05	62	14	Providence	80	60	6
Wilmington	03	63	23	Tiovidence	07	00	0
Winston / Salem	0/	63	14	South Carolina			
vvilistoli/ Salelli	27	03	17	Charleston	05	66	22
North Dakota				Columbia	08	64	23 20
Riemarch	05	60	_24	Florence	96	64	20 21
Dovile Laka	02	50	-2 - 7	Graanvilla	90	61	10
Fargo	93 07	50	-23 _77	Sportophurg	95	60	19
Minot	01	59	-22 _74	opartanourg	75	00	10
	71	_	41				

Location	T _{max}	$T_{_{min}}$	T _c	Location	T _{max}	$T_{_{min}}$	T _c
South Dakota				Washington			
Huron	97	62	-16	Olympia	85	51	21
Rapid City	96	61	-9	Seattle	85	51	20
Sioux Falls	95	62	-14	Spokane	93	58	-2
				Walla Walla	98	57	12
Tennessee				Yakima	94	62	6
 Bristol/Tri City	92	63	11				
Chattanooga	97	60	15	West Virginia			
Knoxville	95	60	13	Charleston	92	63	9
Memphis	98	62	17	Huntington	95	63	10
Nashville	97	62	12	Parkersburg	93	62	8
				6			
<u>Texas</u>				<u>Wisconsin</u>			
Abilene	101	65	17	Green Bay	88	59	-12
Amarillo	98	66	8	La Crosse	90	62	-12
Austin	101	68	25	Madison	92	61	-9
Brownsville	94	74	36	Milwaukee	90	60	-6
Corpus Christi	95	71	32				
Dallas	101	66	19	Wyoming			
El Paso	100	65	21	Casper	92	59	-11
Fort Worth	102	66	20	Cheyenne	89	58	-6
Galveston	91	70	32	Lander	92	58	-16
Loredo AFB	103	74	32	Sheridan	95	59	-12
Lubbock	99	67	11				
Midland	100	66	19	It should be pointed out that	t LFRS	stiffnes	s and VC
Port Arthur	94	69	29	movements requiring flexibility	y are mu	tually ex	clusive or
San Angelo	101	65	20	contradictory requirements th	at need	to be r	econciled.
San Antonio	99	69	25	Though structural stiffness is ne	eded for	structur	al stability
Victoria	98	71	28	under anticipated loading c	ondition	s, the	structures
Waco	101	67	21	should be able to flex enough to	o keep V	C stresse	es in check
Wichita Falls	103	66	15	for proper performance. There	fore, the	question	n becomes
				to what extent can the structura	al moven	nents be	restrained
Utah				so that a structure continues	to perfoi	m well	under VC
Salt Lake City	97	63	5	effects. One way to address th	nis issue	is to qu	antify the
,				restraining effect of LFRS stiffr	ness and	thus kee	p it within
Vermont				certain limits. The movement	factor c	oncept s	serves this
Burlington	88	57	-12	purpose and is discussed as foll	ows.	1	
C							
<u>Virginia</u>				Movement factor			
Lynchburg	94	62	15	The movement factor is a	is an ind	lex that	quantifies
Norfolk	94	60	20	structural flexibility in parking	structure	es. ¹ The 1	movement
Richmond	96	64	14	factor M is defined as the rati	o of actu	ial move	ement and
Roanoke	94	63	15	the calculated unrestrained VC	moveme	ent in a c	diaphragm
				and varies from 0 and 1, depend	ding on t	he LFR	S stiffness.
Washington, DC				For a freely moving diaphragm	under vo	olume ch	anges, the
National Airport	94	63	16	M factor is unity. On the other	r hand, a	diaphra	gm that is

fully restrained by rigid elements on both ends has an M

Fig. 5—Temporary hinge ("sand pocket") provided at column base to reduce LFRS stiffness during construction phase.

factor of zero. The lower bound of the M factor for posttensioned structures performing satisfactorily in service has been determined to be 0.8.¹ The M factor of 0.8 means that a structure moves 80% of the totally unrestrained movement with the remaining 20% movement inhibited by the structural restraint. The 80% movement level also indicates the maximum degree of restraint post-tensioned structures may tolerate while performing reasonably well. For design purposes, the M factor may be defined as a ratio of the first-story VC movement and the corresponding unrestrained VC movement. If an analytical model has an M factor of less than 0.8, it is likely that the underlying structure, when constructed, would not perform well. In such a case, the LFRS should be reexamined and measures should be taken to reduce its stiffness.

One approach to reduce the LFRS stiffness is by reducing the stiffness of the first story columns. Another way to deal with the excess stiffness is to introduce vertical pourstrips in columns, as shown in Fig. 5.⁸ The vertical pourstrips, also known as sand-pockets, reduce LFRS stiffness, reduce post-tensioning losses, and allow the diaphragm to move relatively freely during the construction phase. Thus, they reduce creep and shrinkage accumulations during the construction phase; however, they offer little relief after concrete is placed in the sand pockets.

Structural framing layout

To optimize the use of expansion joints, parking structures need to have a rectangular footprint with the LFRS centered at or near the center of mass of the diaphragm, as shown in Fig. 4. In cases where it is not practical to optimally place the LFRS, the permissible length between the expansion joints should be adjusted using the guidelines presented as follows.

DESIGN GUIDELINES

In light of the aforementioned, the structures using the expansion joint spacing rules prescribed in Fig. 3 without considering restraint caused by its LFRS may not perform satisfactorily during their life time. On the other hand, several structures are in service with expansion joint spacing that exceeds the limits prescribed in Fig. 3. The structures have been designed, detailed, and built keeping the structural restraints within reasonable limits. The following guidelines are presented to assess expansion joint needs in post-tensioned parking structures:

1. The design temperature, structural system type, stiffness, and framing layout are significant parameters in assessing the need for an expansion joint.

2. The design temperature should be computed using Eq. (1).

3. It is preferable that parking structures have a rectangular footprint with the LFRS centered at or near the center of mass of the diaphragm, as shown in Fig. 4.

4. Use the M factor method. The factor M can be expressed as:

$$M = \frac{\Delta_1}{\Delta}$$
(2)

where Δ_1 is the LFRS movement at the first supported level with the diaphragm under anticipated thermal strain, $e_{th}\Delta T$; Δ is the unrestrained anticipated movement = $e_{th}\Delta TX$; e_{th} is the coefficient of thermal expansion of concrete = 7.5 × 10⁻⁶ in./in./°F¹ (13.5 × 10⁻⁶ m/m/°C); ΔT is the design temperature; and X is the building length contributing to volume changes at the expansion joint.

5. In determining Δ_1 , the structural model is subjected to the anticipated strain. It is suggested that post-tensioned floor elements should be considered uncracked. The reinforced concrete elements such as columns may be considered cracked. The extent of allowable cracking depends on the project requirements; however, the effective moment of inertia of the columns used in analysis should not be less than 50% of the gross moment of inertia

6. A structure having an M factor value of 0.9 is considered a moderately rigid structure with a small likelihood of VC cracking. A structure with an M factor of less than 0.8 is considered stiff and is likely to experience

cracking and may require additional reinforcement in various elements to control cracking.

7. For structures with an *M* factor of less than 0.8, VC stresses can be reduced using sand pockets. However, the number and locations of sand pockets needed to reduce stiffness to a reasonable level depends on the extent of distress and cracking that can be tolerated during the structure's lifetime.

REFERENCES

1. Iqbal, M., "Thermal Movements in Parking Structures," *ACI Structural Journal*, V. 104, No. 5, Sept.-Oct. 2007, pp. 542-548.

2. ACI Committee 318, "Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (318R-05)," American Concrete Institute, Farmington Hills, MI, 2005, 430 pp.

3. Iqbal, M., "Seismic Pounding and Expansion Joint Design in Parking Structures," *PTI JOURNAL*, V. 7, No. 1, Aug. 2009, pp. 43-51.

4. Federal Construction Council, "Expansion Joints in Buildings," *Technical Report* No. 65, Building Research Advisory Board, Division of Engineering, National Academy of Sciences, Washington, DC, 1974, 43 pp. 5. Chrest, A. P.; Smith, M. S.; Bhuyan, B.; Iqbal, M.; and Monahan, D. R., *Parking Structures—Planning, Design, Construction, Maintenance and Repairs*, third edition, Kluwer Academic Publishers, Boston, MA, 2001, 856 pp.

6. Post-Tensioning Institute, *PTI Design, Construction* and Maintenance of Cast-In-Place Concrete Parking Structures, sixth edition, Phoenix, AZ, 2006, 354 pp.

7. Prestressed Concrete Institute, *PCI Design Handbook*, sixth edition, PCI, Chicago, IL, 2004, 720 pp.

8. Iqbal, M., "Advances in Design of Post-Tensioned Parking Facilities in High Seismic Zones," Ned H. Burns Symposium—Historic Innovation in Prestressed Concrete, SP-231, B. Russell and S. Gross, eds., American Concrete Institute, Farmington Hills, MI, 2005, pp. 198-219.

Mohammad Iqbal is a Consulting Engineer and Lawyer in Elgin, IL. He received his BS in civil engineering from the University of Engineering & Technology (UET), Lahore, Pakistan; his MS from Middle East Technical University (METU), Ankara, Turkey; his DSc from Washington University, St. Louis, MO; and his LLM from the John Marshall Law School, Chicago, IL. He is a licensed PE and SE in several states, has several years of design experience, and is a coauthor of a book on parking structures.

on quality. Insist on safety. Insist on PTI Certified Personnel.

PTI certification of field personnel is an investment that increases efficiency, reduces risk, and provides you with a competitive edge.

PTI offers certification programs for personnel involved with field installation, inspection, and supervision; the programs are also beneficial for designers of structures with bonded and unbonded PT and slab-on-ground. Visit **www.post-tensioning.org** to learn more and register for upcoming workshops or contact PTI to request a special workshop at your facility or job site.

