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TECHNICAL PAPERS

 

The behavior of corner post-tensioned (PT) slab-column 
connections was rarely studied. This study performs in-depth 
research for better understanding complicated moment and 
shear-transfer mechanism at corner PT slab-column connec-
tions. Literature was reviewed and discussion was made on 
the previous experimental study, which led to carrying out 
sophisticated finite element simulations of previously tested, 
two isolated-corner PT connections. The documented test 
results, along with the finite element simulations, provide 
an innovative way to review the scarce test data in detail. 
Moreover, ACI 318 punching shear provisions were assessed 
using such a unique approach. The assessment shows that the 
current ACI 318 code is conservative in the punching shear 
design of corner PT slab-column connections.

Corner slab-column connections; finite element 
modeling; post-tensioned concrete; punching shear 
failure; unbonded tendons.

INTRODUCTION
Prestressed concrete is essential in many applications 

today to fully use concrete compressive strength and— 
through proper design—to control cracking and deflec-
tion. Although design methods have been developed over 
the decades, an understanding of the ultimate mechanism 
in the prestressed concrete system is still greatly needed in 
many aspects. Such aspects include the intricate problems 
of punching shear failure of a post-tensioned (PT) two-way 
slab system. However, to perform extensive experimental 
tests on each subject is extremely expensive and time-
consuming. The finite element method, on the other hand, 

was introduced into structural analysis in the late 1960s. 
The efforts and developments made by many pioneering 
researchers over the past five decades have enabled the 
finite element method to become a versatile and powerful 
approach in structural analysis. The principal goals of this 
study are to develop modeling schemes for corner PT 
slab-column connections based on general-purpose finite 
element packages and evaluate the current building code 
regarding the corner PT connections.

RESEARCH SIGNIFICANCE
Little research has been conducted on corner PT slab-

column connections. Previous multi-panel tests (Scordelis 
et al. 1959; Gamble 1964; Brotchie and Beresford 1967; 
Odello and Mehta 1967; Muspratt 1969; Burns and 
Hemakom 1977; Kosut et al. 1985; Burns and Hemakom 
1985) included one to four corner connections in each of 
the specimens; however, the research was mainly focused 
on the flexural behavior of PT flat-plate systems and no 
specific study was conducted on the punching shear 
behavior of corner PT connections. In the 1990s, Moehle 
et al. (1994) conducted a biaxial cyclic test of two isolated-
corner PT connections, and Garnder and Kallage (1998) 
conducted an ultimate load test of a four-panel PT flat 
plate with one interior and four corner connections. In 
the current analytical study, crucial data from the former 
(Moehle et al. 1994; Martinez-Cruzado 1993) were 
used to assess the behavior of corner PT connections in 
depth. The latter was also reviewed in the aspect of corner 
PT connections.

A two-bay by two-bay unbonded PT flat plate with 
four continuous panels was designed and tested by 
Gardner and Kallage (1998). The flat plate had a footprint 
of 19 ft 10-3/4 in. x 19 ft 10-3/4 in. (6.1 m x 6.1 m) with 
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a center-to-center span length of 9 ft 11-7/8 in. (3.0  m) 
in each direction. The thickness of the slab was 3.54 in. 
(90 mm), which was supported by nine columns: one 
square interior column, two square edge columns, two 
round edge columns, two square corner columns, and 
two round corner columns. The PT tendons were draped 
in both directions, banded within the column strip in 
the east-west (E-W) direction and uniformly distributed 
in the north-south (N-S) direction. A downward load 
was uniformly distributed on top of the slab via 40 steel 
threaded rods. Gardner and Kallage (1998) intended to 
investigate punching shear behavior of PT slab-column 
connections without an isolated boundary condition. 
Due to a pump leaking failure, testing was aborted before 
punching shear failure occurred. The slab was repaired and 
shored thereafter to continue the test. Edge connections 
failed first in the subsequent tests. After shoring the failed 
connections, the slab was reloaded until punching failure 
of the interior column occurred. One corner connection 
failed after shoring the failed edge and interior connec-
tions. Gardner and Kallage (1998) claimed that the most 
reliable experimental data were obtained for the edge 
connection, whereas the actual experimental failure load 
could be larger for the interior and corner connections 
as the slab was degraded from the previous failure. Even 
with the previous damage, the measured strengths of 
edge and corner connections were larger than the calcu-
lated punching shear strengths without prestress. The 
precompression fpc was reportedly effective and thus can 
be considered in calculating the punching shear capacity 
of edge and corner PT slab-column connections. For more 
detailed information about this experimental investiga-
tion, refer to Gardner and Kallage (1998).  

Moehle et al. (1994) investigated two 3/7-scale 
isolated-corner PT connections (Fig. 1). The slabs 
with the corner connection had an overall length of 7 ft 
1-1/2 in. (2.2 m) in each direction and 3-5/8 in. (92 mm) 
in thickness. The corner connection was in the southwest 
corner, whereas other corners of the slab were supported 
by pin connections simulating an inflection boundary in 
the prototype structure. The slab with the edge connec-
tion had an overall length of 6 ft 11-11/32 in. (2.1 m) in 
both directions and a slab thickness of 3-5/8 in. (92 mm). 
Additional dead loads were applied to the slab before 
testing to achieve the desired gravity load in the column 
at the initialization of the test. Biaxial lateral loading was 
applied to the column top with several cycles of different 
drift ratios for the purpose of simulating multidirectional 
seismic loading. One of the conclusions reached in the 
experimental study was that the presence of high compres-
sive stress in the slab-column connection region increases 
the shear strength of the connection. The increase of 
tensile stress was very small in the prestressing strand 
under constant gravity and increased lateral load.

Specimens C1 and C2 have identical geometry and 
reinforcement, whereas the only discrepancy between 
two specimens is different test procedures. The following 
descriptions are based on Specimen C1. Five 3/8 in. 
(10  mm) diameter prestressing strands were banded 
in the N-S direction concentrating at the column strip 
while prestressing strands were distributed along the 
E-W direction. All prestressing strands were inserted into 
flexible polyvinyl chloride (PVC) tubes to maintain an 
unbonded interface between the strand and the concrete. 
All prestressing strands were drape-shaped. Mild steel bars 
were provided only at the negative-moment region around 
the column. Details of dimensions and reinforcement are 
depicted in Fig. 2, with greater details available in the 
thesis of Martinez-Cruzado (1993).

Columns were designed to stay in the elastic range 
even under the largest lateral load. The half-story column 
below the slab was pinned at its end by a universal bearing 
and a vertical jack was installed under the universal bearing 
to adjust the gravity load during testing (Fig. 1). Another 
half-story column above the slab was pinned at an addi-
tional universal bearing, which connects to two actuators 
at N-S and E-W directions, respectively. Slabs were pinned 
at three corners by vertical struts other than the location 
of the column to simulate the boundary condition at 

Fig. 1—Schematic view of test setup.
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inflection points. A torsional restraint frame was installed 
parallel to the N-S direction to minimize the slab in-plane 
torsion when the lateral loading was carried out. Several 
lead ingots were placed at calculated positions to simulate 
the required gravity load at initial. A cloverleaf displace-
ment loading pattern was applied to the column top with 
several drift ratio cycles to simulate the seismic loading. 
Experimental design drift ratios of 0.1, 0.2, 0.5, 1.0, 1.5, 
and 3.0% were used for C1, and 0.2, 0.4, 0.8, 1.6, and 3.2% 
were applied to C2. 

NUMERICAL MODELS
The modeling schemes used are the same as in the 

previously published PTI JOURNAL paper (Kang and 
Huang 2012) and elsewhere (Huang et al. 2010; Huang 
2012). Although experiments involved a cloverleaf cyclic 
loading pattern for both C1 and C2, the numerical study 
only duplicates the first two steps of certain cycles—that 
is, applying a displacement loading at the column top 
toward the south first, then changing the loading direction 
to the west (Fig. 3). The drift ratios chosen for the numer-
ical simulation were based on the response of lateral reac-
tion versus drift ratio plots in the experiment, as shown in 
Fig. 3. Possible punching shear failures occurred during the 
selected drift ratio loading processes. The actual drift ratios 
recorded in the experiments are slightly different from the 
experimental design drift ratio. Besides Specimens C1 
and C2, two additional imaginary Specimens C1-2.5 and 
C2-2.5 were introduced in the simulation purely based on 
the numerical nature. They are exactly the same as C1 and 
C2, except the ingot weight applied on them is 2.5 times of 
that in the experiment. The motivation of introducing two 
imaginary specimens is investigating shear redistribution 
along the critical section under larger gravity shear. There 
are two sets of analyses with different drift ratios for each 
specimen. Therefore, four specimens were modeled and 
eight simulations were carried out.

The effective prestress fse used in the finite element 
analysis was determined from measured tendon force at 
the experiment. Prestress force was measured from the 
load cell located at the end of each tendon. The desired 
effective prestress level was achieved by several iterations 
of preliminary analyses via uniformly reducing the temper-
ature field of the tendon. Before lateral load analysis, three 
initial analysis steps were performed which were, in order, 
the prestressing step, self-weight step, and ingot-weight 
step. Prestressing was exerted by constraining only the 
column top and bottom because the test specimens were 

not constrained during their prestressing. Following 
the prestressing step, slab corners were immediately 
constrained as pin connections, as in the experiment, to 
be ready to sustain self-weight and ingot weight in subse-
quent steps. The lateral load analysis steps were initiated 
after applying the ingot-weight step, which ensures both 
the numerical and experimental conditions are as similar 
as possible.

NUMERICAL RESULTS AND VALIDATIONS

Plots of lateral load versus drift ratio from C1 and C2 
are first compared to the experimental data. Some differ-

Fig. 2—Details of reinforcement and dimensions of Specimens C1 
and C2. (Note: 1 ft = 305 mm; 1 in. = 25.4 mm.)

Fig. 3—Drift ratios for different numerical simulations. 
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ences exist in loading conditions between experiments 
and analyses (cyclic versus monotonic). The original tests 
employed cloverleaf displacement loading patterns with 
several cycles of different drift ratios. Each cycle contains 
several steps to simulate cyclic loading conditions, which 
begin with N-S displacement loading followed by E-W 
displacement loading. These first two steps were selected 
in finite element analyses as monotonically increasing 
loadings. The discrepancy is that the experiments involved 
unloading for each cycle and the specimens could be 
damaged after one cycle of the test. The initial damage 
caused by the previous cycle, however, was not considered 
in the analyses. Every numerical simulation was performed 
without initial imperfection. Although these differences 
were present, a reasonable agreement between the experi-
ment and numerical model is expected if finite element 
models are well-developed. Generally, in this case, numer-
ical results at the N-S loading stage are expected to comply 
with the backbone curves of experiments, while this is not 

true at the E-W loading stage. The reason is that the initial 
E-W lateral reaction at each drift ratio cycle is different 
at the E-W loading stage. The aforementioned backbone 
comparison is not justified for the E-W loading stages. 
Alternatively, a reasonable agreement of the E-W lateral 
reaction at the end of this loading stage is expected instead.

Figure 4 shows the N-S and E-W lateral reactions at 
the N-S and E-W lateral loading stages respective of c1a 
and c1b. The numerical results reasonably agreed with 
experiments at the N-S lateral loading stage. However, c1a 
predicted a lower lateral reaction, while c1b predicted a 
higher lateral reaction at the end of the E-W lateral loading 
stage. Figure 5 shows the N-S and E-W lateral reactions at 
the N-S and E-W lateral loading stages respective of c2a 
and c2b. Except for c2a, which underestimated lateral reac-
tion at the end of the E-W lateral loading stage, the rest 
of the models have good agreement with the experiments. 
Specimens C1 and C2 have identical geometry, are rein-
forced with similar prestressing strands, and have similar 

Fig. 4—Global responses of numerical simulations related to C1. 
(Note: 1 k = 4.45 kN.)

Fig. 5—Global responses of numerical simulations related to C2.
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material properties, but C1 has initial damage caused by 
mishandling (cracks were found on the top surface at an 
angle of approximately 45 degrees with respect to the 
slab free edge). In addition, C1 has been tested with 11 
repetitive cycles of cloverleaf loading. C1 could be severely 
damaged during tests, which might be another reason why 
larger discrepancies were found at the E-W lateral reaction 
plots. In contrast, C2, with only five cycles of cloverleaf 
loading and without initial damage, had less differences 
compared to numerical results.

The damage patterns of the simulation c1b and its 
experimental counterpart are shown in Fig. 6 and 7. It is 
noted that the numerical simulations showed much less 
damages than experimental observations. Several cycles 
of loading and unloading might have caused the exces-
sive damage in the experiments. The idealized numerical 
boundary condition of the complicated experimental  
setup might also have caused the observed difference.                                                                     

ACI 318-11, Section 11.11, (ACI Committee 318 
2011) describes the moment and shear-transfer mecha-
nism at slab-column connections. The total shear at the 
critical section is assumed to be the sum of direct shear and 
eccentric shear due to a fraction of unbalanced moment 
transfer. To study the shear-stress distribution under varied 
direct shear load and unbalanced moment, the shear-stress 
distribution along the critical section is plotted based on 
the numerical results. The “vertical” shear-stress distribu-
tion along the slab thickness direction is not addressed in 
the eccentric shear-stress model, which assumes the shear 
stress is independent of vertical position. To comply with 
this assumption and obtain the general pattern of the shear-
stress distribution along the critical section, numerical shear 
stresses were extracted from the integration points of five 
vertical elements, which are in the same location on the plan 
view. Shear stresses τ12 and τ23 were read from the east and 
north faces of the critical section, respectively. The average 
of the five layers’ shear stresses is plotted at eight locations 
on the east and north sides of the critical section (Fig. 8).

Figure 9 shows the shear-stress histories of each loca-
tion at the critical section of the c1a analysis. The numerical 
shear stresses are plotted versus drift ratio, which clearly 
presents variations of the shear stresses during lateral 
loadings. The shear-stress histories calculated from the 
eccentric shear-stress model at Locations 1 (south corner 
on east face), 8 (front corner on east face), 9 (front corner 
on north face), and 16 (west corner on north face) are also 

included in Fig. 9 for comparison. It is obvious that the 
numerical shear stress trend at the south corner reasonably 
agrees with the calculation from the eccentric shear-stress 
model. However, a large difference of the initial shear 
stress is noticed at the south corner. This is because the 
eccentric shear-stress model only considers the direct 
shear and the unbalanced moment-induced eccentric 
shear at initial, while for this case, initial shear stress due 

Fig. 6—Damage pattern of simulation c1b.

Fig. 7—Damage pattern of C1 (adapted from Martinez-Cruzado 
1993).
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to prestress is considerable. Given the fact that tendons are 
banded in the N-S direction concentrated on the column 
strip, the upward initial shear stress due to prestress at the 
north face of the critical section is much higher than that at 
the east face. As a result, the eccentric shear-stress model 
presents quite a different value than the numerical one. In 
spite of the different initial shear stresses, the trend of the 
shear-stress variation of numerical results and the eccen-
tric shear-stress model predictions are similar. The shear-
transfer mechanism described by the eccentric shear-stress 
model seems to be reasonable. 

Figure 10 shows the same content for the c1b simula-
tion. The stress at the front corner is much smaller than 
the eccentric shear-stress model prediction during the 
whole simulation, which might imply a smaller unbalanced 
moment-transfer ratio (more discussions about unbalanced 
moment transfer will be presented in the following 
section). The numerical results at both the south and west 
corners present similar patterns to the c1a simulation. 

Fig. 8—Plan configuration for shear-critical section of corner PT 
slab-column connection.

Fig. 9—Shear-stress histories at several points from simulation c1a. 
(Note: 1 psi = 6.89 kPa.)

Fig. 10—Shear-stress histories at several points from simulation c1b. 
(Note: 1 psi = 6.89 kPa.)
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Numerical shear-stress distributions of all rest analyses 
(Huang 2012) behave similarly to c1a and c1b, which yield 
the conclusions as follows: 1) the eccentric shear-stress 
model predicts the shear-stress transfer and distribution 
trend reasonably well; 2) the shear stress calculated using 
the eccentric shear-stress model could differ greatly from 
the real case because of a presence of the large initial shear 
stress due to prestress and because of the following reason; 
and 3) a reduction of the unbalanced moment-transfer 
ratio might be considered in the calculation when the slab-
column connection is cracked.

Figure 11 shows a three-dimensional plot of shear-
stress distribution along the critical section of each analysis. 
Only the shear-stress distribution at the initial and end 
stages of N-S lateral loading and E-W lateral loading are 
shown in this figure. The relatively linear distributions of 
shear stresses are shown along the north and east face of 
the critical section, supporting the conclusion that the 
eccentric shear-stress model is reasonable and effective for 
corner PT slab-column connections.

ACI 318 CODE PROVISIONS FOR PUNCHING 
SHEAR

In this section, the description of the eccentric shear-
stress model is first presented; then, the approach of calcu-
lating the design shear stress is introduced. Equations are 
evaluated associated with numerical simulations and exper-
iments. Further analyses based on comparisons among the 
design shear stress, numerical shear stress, and ACI  318 
permitted shear-stress capacity are presented in this 

section, which yields suggestions to the currently adopted 
eccentric shear-stress model in the code. The adjustment 
of unbalanced moment transfer factor γf is not permitted 
for prestressed slab-column connections according to 
ACI 318-11, Section 13.5.3.3 (ACI Committee 318 2011). 
The prestressing effect is not taken into account when 
calculating the shear capacity of such corner connections 
according to ACI 318-11, Section 11.11.2.2. To evaluate 
these provisions, the numerical shear stresses obtained along 
the critical section will be used as shown in the following 
subsections. Note that such stress values and distributions 
have not been obtained directly from most experiments of 
two-way slabs and slab-column connections.

The current building code (ACI 318-11) presents a 
model dealing with unbalanced moment shear transfer 
at slab-column connections. A portion of unbalanced 
moment is assumed to be transferred by flexure, while the 
rest is transferred by the eccentric shear. The fractions of 
unbalanced moment transferred by flexure and eccentric 
shear at a corner PT connection are given by γf and γv, 
respectively—as per ACI 318-11, Sections 13.5.3.2 and 
11.11.7.1—and as shown by the following equations

11
221 3 2

γ = −
+

+
+

x
y

x

c d
c d

(1)

Fig. 11—Three-dimensional plots of shear-stress distribution of all simulations.
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(2)
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where d is the effective depth of the slab; and cx and cy are 
the column dimensions in parallel with and perpendicular 
to the considered unbalanced moment, respectively. The 
design shear stress at each corner of the critical section for 
a corner connection is determined as follows
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where Vu is the design direct shear; Ac is the area of the 
critical section; Mu,x and Mu,y are the design unbalanced 
moments about the x-axis and y-axis, respectively (in this 
paper, x-axis refers to E-W direction, y-axis refers to N-S 
direction); Jcx and Jcy are the polar moment of inertia of the 
whole critical section with respect to the axes of x and y, 
respectively; and other definitions of g1, g2, cAB, and cCD are 
shown in Fig. 12.

Stresses (vu) were calculated based on Eq. (1) to (10) 
and using mixed data points of Vu, Mu,x, and Mu,y (Table 1) 
from experiments and simulations. Note that some data 
required to perform the calculation are not accessible from 
the experiments. For example, the experimental column 
reaction plots are not legible; thus, they were instead read 
from numerical simulations. These factors, however, make 
small contributions to vu and the differences between the 
experiments and simulations should be small. These vu 
values are compared with those directly obtained from 
numerical simulations—that is, the averages of five layers’ 
numerical shear stresses along the slab thickness at speci-
fied locations (Fig. 13).

ACI 318-11, Section 11.11.2.2, defines the punching 
shear strength of an interior PT slab-column connection as

( )0 3= β λ + +′ .c p c pc o pV f f b d V (11)

where βp is the smaller of 3.5 and (αsd/bo + 1.5) if fc′ 
is in psi; βp is the smaller of 0.29 and 0.083 (αsd/bo  + 
1.5) if fc′ is in MPa; αs = 40, 30, and 20 for interior, 
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exterior, and corner connections, respectively; λ is the 
lightweight concrete modification factor (λ = 1 for PT slabs 
with normalweight concrete); bo is the perimeter of the 
assumed critical section; d is the slab effective depth; fpc is 
the average compressive stress of concrete due to the effec-
tive post-tensioning force exerting on the full slab section; 
and Vp is the vertical component of all effective post-
tensioning forces going through the critical section. The Vp 
term is approximately neglected in the study, as the tendon 
profile was relatively straight with almost zero eccentricity 
in the tested corner connection. Recall that Eq.  (11) is 
not permitted if ACI 318-11, Sections  11.11.2.2(a), (b), 
and (c) are not satisfied. If the limits are not satisfied, 
Section 11.11.2.1 shall apply, which states that Vc shall be 
the smallest of Eq. (12) through (14).

42
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Here, as is 40 for interior columns, 30 for edge columns, 
and 20 for corner columns.

4

0 33

= λ ′

= λ ′.   (SI)
c c o

c c o

V f b d

V f b d
(14)

The specimens tested by Moehle et al. (1994) do not 
satisfy limits (a) and (b), which implies that the punching 
shear strength of these corner connections should be 
calculated using Eq. (12) through (14). These equa-
tions are equivalent to those of reinforced concrete slab-
column connections without post-tensioning. ACI 318-11, 
Commentary R11.11.2.2, states that the prestress is not 
fully effective around the perimeter of the critical section 
near the slab edge; therefore, the prestressing effect is not 
taken into account calculating the shear capacity. Previous 
research on the four-panel PT flat plate (Gardner and 
Kallage 1998), however, did reveal that shear capacity 
increases, even if the critical section is near the slab edge. 
The current study is in agreement with the previous 
research finding, as described in the following paragraph.

Table 1 summarizes the stress calculations at experi-
mental punching shear failure or possible punching failure 
points for simulations of c1a, c1b, c2a, and c2b. The 
notations of c1a’, c1b’, c2a’, and c2b’ represent the points 
at the ends of N-S lateral loading for c1a, c1b, c2a, and 
c2b simulations, respectively. The largest shear stress is 
marked for each case and compared with the shear-stress 
capacity vc1 and vc2, as per ACI 318-11, Sections 11.12.2.1 
(Eq. (12) to (14)) and 11.12.2.2 (Eq. (11)), respectively. 

Fig. 12—Symbols and notation associated with eccentric shear-stress model 
(B: west corner; A: front corner; D: south corner).
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In Table 1, “FEA” and “FEA(max)” represent the current 
and maximum shear-stress readings, respectively, during 
the simulation. The large discrepancy between “FEA” and 
“FEA(max)” indicates the fact that the maximum numer-
ical shear stress might not occur right at the ends of lateral 
loadings. Figures 14(a) and (b) reveal that the maximum 
shear stress actually occurred at the south corner during 
the N-S lateral loading in all the conducted simulations. 
The maximum shear stress exceeded the capacity suggested 
by Eq. (11), except the front corner of c2b and c2b-2.5, 
implying that Eq. (11) appears to also be conservative 
for corner PT connections. Based on the numerical data, 
several critical data points other than at the ends of lateral 
loadings are also included in Table 1. 

The very large ratio of maximum shear stress to vc2 
indicates that the shear stress predicted by the eccentric 
shear-stress model underestimates actual punching shear 
capacity (note that the stress calculated from Method 2 in 
Table 1 is mostly based on the experimental data). Given 
the fact that the actual experimental punching failures 
of Specimens C1 and C2 did occur after reaching the 
maximum shear stress, either the eccentric shear-stress 
model and/or the punching shear capacity prediction is 
overly conservative. As a comparison, stresses calculated 
based on a reduced unbalanced moment transfer factor 
(γv  = 0.3) are also included in Table 1. Even with the 
reduced unbalanced moment transfer factor, the maximum 
shear stresses are still larger than vc2 in most cases. Table 2 
summarizes the simulations of c1a-2.5, c1b-2.5, c2a-2.5, 

Fig. 13—Monitoring of direct and eccentric (torsional) shear stresses associated with eccentric 
shear-stress model.

Fig. 14—Normalized numerical shear stress versus drift ratio at 
three critical locations (from numerical simulations of c1b, c1b-2.5, 
c2b, and c2b-2.5). (Note: fc′ in units of psi.)
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and c2b-2.5, and shows the same results as Table 1 suggests. 
This indicates that the nominal punching shear strength on 
the basis of Eq. (12) to (14) is not representative of the 
actual shear strength of corner PT connections.

It would be more proper to evaluate the eccentric 
shear-stress model when the shear stress reaches the peak 
in the critical section. Table 3 shows the evaluations made 
at those data points, where the “FEA” and “FEA(max)” 
are the same. Nevertheless, considering that the upward 
initial shear stresses at the south and west corners are not 
considered in the eccentric shear-stress model, the actual 
shear stresses would be much higher than the numerical 
shear stresses. Therefore, the results still yield the same  
conclusion that either the eccentric shear-stress 
model or the shear-stress capacity as per ACI 318-11 
(Section  11.12.2.1) is conservative. The next subsec-
tion discusses more about unbalanced moment transfer 
ratio (γv).

The assessment of γv is accomplished by substituting 
numerical shear stress vu into Eq. (3). This assessment 

is purely based on numerical results. Because the upward 
initial shear stresses are very large at the south corner and 
west corner due to prestress, only the front corner stress 
(at Point A in Fig. 12) is evaluated in this study. Figure 15 
shows the derived γv from the method described previously. 
All γvvalues show a similar pattern. They are always smaller 
than 0.3 and tend to decrease as the drift ratios increase. This 
is consistent with the conclusion drawn from the preceding 
subsection (that is, conclusions about the values in Tables 1 
to 3), as well as the companion PT edge connection study 
previously conducted by the same authors (Kang and 
Huang 2012). The decreasing γv against the drift is reason-
able because the connection region is no longer rigidly 
elastic as the cracks progress. Subsequently, torsional resis-
tance would be compromised with the yield of bonded steel, 
leading to the reduction of torsional transfer of unbalanced 
moment. Therefore, a conclusion can be drawn together 
with the analysis of the preceding subsection that a reduc-
tion of γv to 0.3 (or possibly up to 0.2) is suggested for the 
punching shear design of a corner PT slab-column connec-
tion. Even though the analyses based on both the experi-
mental and numerical data lead to the same conclusion as 

Fig. 15—Unbalanced moment transfer ratio at front corner of each simulation.
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in this study, more investigations of corner PT slab-column 
connections are of great need for further understanding the 
punching shear-failure mechanism.

The previously proposed finite element modeling 
schemes dealing with unbonded PT structures have been 
used in this study to investigate ACI 318-11 punching 
shear provisions applying to corner PT slab-column 
connections. Two corner specimens tested by Moehle 
et al. (1994) were modeled. Reasonable agreements are 
achieved between the numerical simulations and experi-
ments. Based on the investigation, the following conclu-
sions can be drawn:

1. The initial shear stress due to prestress could be consid-
ered in the ACI 318-11 punching shear provisions, particu-
larly in the direction of banded post-tensioning tendons.

2. The shear-stress value and distribution on the 
critical section and the shear-stress variation against the 
drift reasonably agree with the shear-transfer mechanism 
proposed by the eccentric shear-stress model. However, as 
the connection damage progresses, the degree of eccentric 
shear transfer of unbalanced moment seems to decrease. 
The plot of γv versus the drift ratio yields the same conclu-
sion that γv never exceeded 0.3 and decreased as the 
cracks proceeded. A reduction of γv to 0.3 or possibly 
0.2 could be considered for the design of corner PT slab-
column connections.

3. The current punching shear provisions are too conser-
vative regarding corner PT slab-column corner connections. 
Evidence has suggested that design shear strength, even 
with the reduced unbalanced moment transfer ratio γv, still 
led to conservative design. The maximum shear stress taken 
directly from the numerical model is greater than both the 
ACI 318 capacities with and without consideration of the 
prestressing effect. Again, two potential reasons are that: 
1) the upward initial shear stresses are not considered in 
the eccentric shear-stress model; and 2) the shear capacity 
equation, including PT contribution, is not allowed by ACI 
318-11. However, more experimental investigations are 
needed to further quantify verdicts drawn in this study and 
to improve the design guidelines of corner PT slab-column 
connections in ACI 318. 
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